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Abstract 

 

In this study, we suggested a novel approach for solving multi-functional integro-differential equations 

with mixed delays, by using orthogonal Jacobi polynomials. These equations include various classes of 

differential equations, integro-differential equations and delay differential equations. This new algorithm 

proposes solutions for each class of these equations and combinations of equation classes, such as 

Volterra integro-differential equation, Fredholm integro-differential equation, pantograph-delay 

differential equations. Since the present method is based on fundamental matrix relations and collocation 

points, numerical solutions can be obtained easily by means of symbolic computation programs. We 

developed an error estimation algorithm based on the present method for the verification of solutions. 

Application of the method is illustrated by four numerical examples.  

 

Keywords: Jacobi matrix method, functional integro-differential equation, error estimation algorithm. 

 

1. Introduction 

 

In recent years, many researchers have studied on the 

numerical solution of different classes of the integro 

differential equations because integro-differential 

equations have been one of the principal tools in various 

areas of applied mathematics, biological models, 

physics and engineering [1] and also functional integro-

differential equations are often used to model some 

problems with aftereffect in mechanics and the related 

scientific fields [2].  Our study is aimed to introduce a 

new numerical solution method of the multi-functional 

integro-differential equations with mixed delays (mf-

IDD Eqs.) which include Volterra integro-differential 

equations, Fredholm integro-differential equation, 

pantograph-delay differential equations and also all sub-

classes or combinations of these. For this reason, we 

generate a procedure to obtain a numerical solution for 

the following mf-IDD equations 

∑ ∑𝑃𝑘𝑙(𝑥)𝑦(𝑘)(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙)

𝑚2

𝑙=0

𝑚1

𝑘=0

= 𝑓(𝑥) + 

∑ ∑𝜆𝑟𝑠 ∫ 𝐾𝑟𝑠(𝑥, 𝑡)𝑦(𝑟)(𝜇𝑟𝑠𝑡 + 𝛾𝑟𝑠)𝑑𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

𝑚4

𝑠=0

𝑚3

𝑟=0

, 

𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏 

(1.1) 

 

under the initial and boundary conditions 

 

∑[𝑎𝑖𝑘𝑦
(𝑘)(𝑎) + 𝑏𝑖𝑘𝑦

(𝑘)(𝑏)]

𝑚−1

𝑘=0

= 𝜂𝑖, 

  𝑚 = max(𝑚1, 𝑚3), 𝑖 = 0, 1, 2, … ,𝑚 − 1 

(1.2) 

 

where 𝑃𝑘𝑗(𝑥) and 𝑓(𝑥) are known functions defined on 

the interval, 𝑎 ≤ 𝑥 ≤ 𝑏; 𝛽𝑘𝑗, 𝜆𝑟𝑠, 𝛾𝑟𝑠 𝑎𝑖𝑘, 𝑏𝑖𝑘 and 𝜂𝑖 are 

real or complex constants, 0 < 𝛼𝑘𝑗 , 𝜇𝑟𝑠 < 1, 𝐾𝑟𝑠(𝑥, 𝑡) 

are kernel functions and, 𝑦(𝑥) is the unknown function 

to be determined.  

 

In very recent years, several mathematicians have been 

interested in mf-IDD Equations and their sub-classes for 

obtaining numerical solutions. Oğuz and Sezer [3] 

developed Chelyshkov collocation method for the 

numerical solutions of mixed functional integro-

differential equations. Mirzaee et al. [4] gave the 

numerical solution method based on Euler polynomial 

for the solutions of Volterra differential equations 

pantograph-delay type. Kürkçü et al. [5] used Dickson 

polynomials to enhance matrix based collocation 

method for mf-IDD equations. Yüzbaşı [6] presented a 

new numerical approach by using Laguerre polynomials 

for solving linear pantograph-type Volterra integro-
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differential equations. Reutskiy [7] studied linear 

Volterra-Fredholm integro differential equations with 

linear functional arguments. 

 

We use the orthogonal Jacobi polynomials 𝑃𝑛
(𝛼,𝛽)

(𝑥) in 

order to develop a new approach to obtain the numerical 

solutions of the mf-IDD equation. The orthogonal 

Jacobi polynomials are defined with respect to 

𝜔𝛼,𝛽(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽  (𝛼 > −1, 𝛽 > −1) 

(weight function) on (−1,1) and it is proved that the 

Jacobi polynomials satisfy the following relation [8, 9]; 

 

𝑃𝑛
(𝛼,𝛽)

(𝑥) = ∑ 𝐵𝑛
(𝛼,𝛽,𝑛)

𝑛

𝑘=0

(𝑥 − 1)𝑘;   𝛼, 𝛽 > −1 

𝐵𝑛
(𝛼,𝛽,𝑛)

= 2−𝑘 (
𝑛 + 𝛼 + 𝛽 + 𝑘

𝑘
) (

𝑛 + 𝛼

𝑛 − 𝑘
) ;   

𝑘 = 0, 1, 2, … , 𝑛 

Note that 𝛼 and 𝛽 are special parameters of the Jacobi 

polynomials. The Jacobi polynomials transform to some 

known orthogonal polynomials with respect to 𝛼 and 𝛽. 

Some of the most important are Legendre (𝛼 =  𝛽 = 0), 

Chebyshev (𝛼 =  𝛽 = −1/2) and Gegenbauer (𝛼 =  𝛽) 

polynomials. This versatility of Jacobi polynomials are 

provided that more than one solution unlike the most of 

others. 

 

By using the definition of the Jacobi polynomials, we 

assume a solution expressed as the truncated series of 

orthogonal Jacobi polynomials defined by 

𝑦(𝑥) ≅ 𝑦𝑁
(𝛼,𝛽)

(𝑥) = ∑ 𝑎𝑛𝑃𝑛
(𝛼,𝛽)

(𝑥)

𝑁

𝑛=0

 

 

where 𝑃𝑛
(𝛼,𝛽)

(𝑥), 𝑛 = 0, 1, 2, … , 𝑁 denote the orthogonal 

Jacobi polynomials defined above; 𝑁 is chosen any 

positive integer such that 𝑁 ≥ 𝑛 and 𝑎𝑛 , 𝑛 =
0, 1, 2, … , 𝑁 are unknown coefficients.  

 

Jacobi collocation method is a collocation method based 

on matrix operations. This matrix operations method 

named “matrix method” was introduced by Sezer [8] 

and developed over time by applying to different 

problems like differential equations [9] and integro-

differential equations [10]. The matrix method have also 

been adapted to many different problems based on 

various polynomials such as Bessel polynomials [11] 

and Laguerre polynomials [12] for various classes of the 

integral equations. Researchers applied the method to 

various engineering problems. Baykuş and Çevik [13] 

solved the single-degree-of-freedom (SDOF) system by 

using Taylor polynomials. Çevik et al. [14] solved the 

delayed SDOF problem by using exponential functions. 

Deniz and Sezer [15] solved the nonlinear heat transfer 

equations using Rational Chebyshev polynomials. In 

addition, Deniz et al. [16] published a study in which 

stability analysis of the Taylor Collocation Method is 

performed. 

2. Matrix Representation of Each Term of the 

Problem 

 

In this section, we transform each term of Eq. (1.1) to 

matrix form. First, we obtain 𝑃𝑛
(𝛼,𝛽)

(𝑥) orthogonal 

Jacobi polynomials of matrix form as follows: 

𝐏(𝛼,𝛽)(𝑥) = 𝐗(𝑥)𝐌(𝛼,𝛽) (2.1) 

where 

𝐏(𝛼,𝛽)(𝑥) = [𝑃0
(𝛼,𝛽)

(𝑥) 𝑃1
(𝛼,𝛽)

(𝑥) … 𝑃𝑁
(𝛼,𝛽)

(𝑥)] 

𝐗(𝑥) = [1 (𝑥 − 1) (𝑥 − 1)2 … (𝑥 − 1)𝑁] 
 

and 𝐌(𝛼,𝛽) = [𝑚𝑖𝑗
(𝛼,𝛽)

]
(𝑁+1)×(𝑁+1)

 such that 

𝑚𝑖𝑗
(𝛼,𝛽)

= {
21−𝑖 (

𝑖 + 𝑗 − 2 + 𝛼 + 𝛽

𝑖 − 1
) (

𝑗 − 1 + 𝛼

𝑗 − 𝑖
) , 𝑖 ≤ 𝑗

0                                                                    ,         𝑖 > 𝑗

 

 

We assume the desired solution 𝑦(𝑥) of Eq. (1.1) to be 

defined by the truncated orthogonal Jacobi series in 

matrix form as follows: 

[𝑦𝑁
(𝛼,𝛽)

(𝑥)] = 𝐏(𝛼,𝛽)(𝑥)𝐀 (2.2) 

 

where 𝐀 = [𝑎𝑖𝑗](𝑁+1)×1
 such that 

𝑎𝑖𝑗 = 𝑎𝑖−1 (2.3) 

By substituting the matrix form of Jacobi polynomials 

(2.1) into (2.2), we can obtain the fundamental matrix 

equation of the approximate solution for the unknown 

function as [17, 18] 

 

[𝑦𝑁
(𝛼,𝛽)

(𝑥)] = 𝐗(𝑥)𝐌(𝛼,𝛽)𝐀. (2.4) 

First, in order to explain the relation between the matrix 

form of the unknown function 𝑦(𝑥) and the matrix form 

of its derivatives 𝑦(𝑘)(𝑥), we introduce the relation 

between the matrix 𝐗(𝑥) and its derivatives 𝐗(𝑘)(𝑥) 

which can be expressed as 

𝐗(𝑘)(𝑥) = 𝐗(𝑥)𝐁𝑘 (2.5) 

 

where 𝐁 = [𝑏𝑖𝑗](𝑁+1)×(𝑁+1)
 such that 

𝑏𝑖𝑗 = {
𝑖 , 𝑗 − 𝑖 = 1
0 , 𝑜𝑡ℎ𝑒𝑟𝑠

 

 

Then, using (2.4) and (2.5), one may write 

 

[𝑦(𝑘)(𝑥)] ≅ [(𝑦𝑁
(𝛼,𝛽)

)
(𝑘)

(𝑥)]

= 𝐗(𝑘)(𝑥)𝐌(𝛼,𝛽)𝐀

= 𝐗(𝑥)𝐁𝑘𝐌(𝛼,𝛽)𝐀 

(2.6) 
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Similarly, the relation between the matrix form of 𝑦(𝑥) 

and the matrix form of its delay forms’ derivatives 

𝑦(𝑘)(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙) can be expressed as 

𝑦(𝑘)(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙) = 𝐗(𝑘)(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙)𝐌
(𝛼,𝛽)𝐀 

= 𝐗(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙)𝐁
𝑘𝐌(𝛼,𝛽)𝐀 

= 𝐗(𝑥)𝐁(𝛼𝑘𝑙 , 𝛽𝑘𝑙)𝐁
𝑘𝐌(𝛼,𝛽)𝐀 

(2.7) 

 

where 𝐁(𝛼𝑘𝑗 , 𝛽𝑘𝑗) = [𝑏𝑖𝑗(𝛼𝑘𝑙 , 𝛽𝑘𝑙)](𝑁+1)×(𝑁+1)
 such 

that 

𝑏𝑖𝑗(𝛼𝑘𝑙 , 𝛽𝑘𝑙) = {
(
𝑗 − 1

𝑖 − 1
) (𝛼𝑘𝑗)

𝑖−1
(𝛽𝑘𝑗)

𝑗−𝑖
, 𝑖 ≤ 𝑗

0 , 𝑖 > 𝑗
 

 

Using (2.7), the matrix form of the differential part of 

Eq. (1.1) becomes 

∑ ∑ 𝑃𝑘𝑙(𝑥)𝑦(𝑘)(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙)

𝑚2

𝑙=0

𝑚1

𝑘=0

= ∑ ∑ 𝑃𝑘𝑙(𝑥)𝐗(𝑥)𝐁(𝛼𝑘𝑙 , 𝛽𝑘𝑙)𝐁
𝑘𝐌(𝛼,𝛽)𝐀

𝑚2

𝑙=0

𝑚1

𝑘=0

 

(2.8) 

 

Finally, the matrix form of the integral part of Eq. (1.1) 

is obtained as follows 

∫ 𝐾𝑟𝑠(𝑥, 𝑡)𝑦(𝑟)(𝜇𝑟𝑠𝑡 + 𝛾𝑟𝑠)𝑑𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

 

= ∫ 𝐾𝑟𝑠(𝑥, 𝑡)𝐗(𝑡)𝐁(𝜇𝑟𝑠, 𝛾𝑟𝑠)𝐁
𝑟𝐌(𝛼,𝛽)𝐀𝑑𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

 

= ( ∫ 𝐾𝑟𝑠(𝑥, 𝑡)𝐗(𝑡)𝑑𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

)𝐁(𝜇𝑟𝑠, 𝛾𝑟𝑠)𝐁
𝑟𝐌(𝛼,𝛽)𝐀 

= 𝐐𝑟𝑠(𝑥)𝐁(𝜇𝑟𝑠, 𝛾𝑟𝑠)𝐁
𝑟𝐌(𝛼,𝛽)𝐀 

 

where 𝐐𝑟𝑠(𝑥) = [𝑞𝑖𝑗(𝑥)]
1×(𝑁+1)

 such that 

𝑞𝑖𝑗(𝑥) = ∫ 𝐾𝑟𝑠(𝑥, 𝑡)(𝑡 − 1)𝑗−1𝑑𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

 

 

We can write briefly as follows:  

∫ 𝐾𝑟𝑠(𝑥, 𝑡)𝑦(𝑟)(𝜇𝑟𝑠𝑡 + 𝛾𝑟𝑠)𝑑𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

 

= 𝐐𝑟𝑠(𝑥)𝐁(𝜇𝑟𝑠, 𝛾𝑟𝑠)𝐁
𝑟𝐌(𝛼,𝛽)𝐀 

(2.9) 

 

From (2.8) and  (2.9), we obtain the matrix form of Eq. 

(1.1) as follows:  

∑ ∑𝑃𝑘𝑙(𝑥)𝐗(𝑥)𝐁(𝛼𝑘𝑙 , 𝛽𝑘𝑙)𝐁
𝑘𝐌(𝛼,𝛽)𝐀

𝑚2

𝑙=0

𝑚1

𝑘=0

 

= 𝑓(𝑥) 

+∑∑ 𝜆𝑟𝑠𝐐𝑟𝑠(𝑥)𝐁(𝜇𝑟𝑠, 𝛾𝑟𝑠)𝐁
𝑟𝐌(𝛼,𝛽)𝐀

𝑚4

𝑠=0

𝑚3

𝑟=0

 

(2.10) 

We can obtain the corresponding matrix forms for the 

conditions (1.2), by means of the relation (2.4), as 

∑[𝑎𝑖𝑘𝑦
(𝑘)(𝑎) + 𝑏𝑖𝑘𝑦(𝑘)(𝑏)]

𝑚−1

𝑘=0

 

= ∑[𝑎𝑖𝑘𝐗(𝑎)𝐁𝑘𝐌(𝜶,𝜷)𝐀

𝑚−1

𝑘=0

+ 𝑏𝑖𝑘𝐗(𝑏)𝐁𝑘𝐌(𝜶,𝜷)𝐀] 

= [𝜂𝑖], 
  𝑖 = 0, 1, 2, … ,𝑚 − 1. 

(2.11) 

3. Method of Solution 

 

For constructing the matrix equation, the matrix 

relations (2.8) and (2.9) are first substituted into Eq. 

(1.1); then, by using collocation points defined by 

𝑥𝜏 = 𝑎 +
𝑏 − 𝑎

𝑁
𝜏, 𝜏 = 0,1, 2, … , 𝑁 

the system of matrix equations is obtained as 

∑ ∑𝑃𝑘𝑙(𝑥𝜏)𝐗(𝑥𝜏)𝐁(𝛼𝑘𝑙 , 𝛽𝑘𝑙)𝐁
𝑘𝐌(𝛼,𝛽)𝐀

𝑚2

𝑙=0

𝑚1

𝑘=0

 

= 𝑓(𝑥𝜏) + ∑ ∑𝜆𝑟𝑠𝐐𝑟𝑠(𝑥𝜏)𝐁(𝜇𝑟𝑠, 𝛾𝑟𝑠)𝐁
𝑟𝐌(𝛼,𝛽)𝐀

𝑚4

𝑠=0

𝑚3

𝑟=0

,

𝜏 = 0,1, 2, … , 𝑁 

Therefore, the fundamental matrix equation becomes 

{∑ ∑ 𝐏𝑘𝑙𝐗𝐁(𝛼𝑘𝑙 , 𝛽𝑘𝑙)𝐁
𝑘𝐌(𝛼,𝛽)

𝑚2

𝑙=0

𝑚1

𝑘=0

− ∑∑ 𝜆𝑟𝑠𝐐𝑟𝑠
̅̅ ̅̅̅𝐁(𝜇𝑟𝑠, 𝛾𝑟𝑠)𝐁

𝑟𝐌(𝛼,𝛽)

𝑚4

𝑠=0

𝑚3

𝑟=0

}𝐀 = 𝐅 

(3.1) 

 

where 𝐏𝑘𝑙 = [𝑝](𝑁+1)×(𝑁+1) 

𝐏𝑘𝑙 = [

𝑃𝑘𝑙(𝑥0) 0

0 𝑃𝑘𝑙(𝑥1)
⋯

0
0

⋮ ⋱ ⋮
0           0 ⋯ 𝑃𝑘𝑙(𝑥𝑁)

],  

𝐅 = [

𝑓(𝑥0)

𝑓(𝑥1)
⋮

𝑓(𝑥𝑁)

],  

𝐐𝑟𝑠
̅̅ ̅̅̅ = [

𝐐𝑟𝑠(𝑥0)

𝐐𝑟𝑠(𝑥1)
⋮

𝐐𝑟𝑠(𝑥𝑁)

] and 𝐗 = [

𝐗(𝑥0)

𝐗(𝑥1)
⋮

𝐗(𝑥𝑁)

]. 

 

The fundamental matrix equation (2.10) of Eq. (1.1) 

corresponds to a system of 𝑁 + 1 algebraic equations 

for the 𝑁 + 1 unknown coefficients 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑁. 

Briefly, if we determine  
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𝐖

= (∑ ∑ 𝐏𝑘𝑙𝐗𝐁(𝛼𝑘𝑙 , 𝛽𝑘𝑙)𝐁
𝑘

𝑚2

𝑖=0

𝑚1

𝑘=0

− ∑∑ 𝜆𝑟𝑠𝐐𝑟𝑠
̅̅ ̅̅̅𝐁(𝜇𝑟𝑠, 𝛾𝑟𝑠)𝐁

𝑟

𝑚4

𝑠=0

𝑚3

𝑟=0

) 𝐌(𝛼,𝛽) 

 

then, we can write Eq. (3.1) in the form 

 

𝐖𝐀 = 𝐅 or [𝐖; 𝐅]. (3.2) 

 

On the other hand, from (2.11), we can obtain the 

matrix form of conditions briefly as    

𝐔𝑖𝐀 = 𝜂𝑖 or [𝐔𝐣; 𝜂𝑖],      𝑖 = 0, 1, 2, … ,𝑚 − 1 (3.3) 

 

such that 

 

𝐔𝑖 = ∑[𝑎𝑖𝑘𝐗(𝑎) + 𝑏𝑖𝑘𝐗(𝑏)]

𝑚−1

𝑘=0

𝐁𝑘𝐌(𝜶,𝜷) 

 

Consequently, in order to obtain the solution of Eq. 

(1.1) under the mixed conditions (1.2), we replace the 

row matrix (3.3), by last 𝑛 rows of the augmented 

matrix (3.2), which yields the required augmented 

matrix 

 

[𝐖̃; 𝐅̃] (3.4) 

 

If rank𝐖̃ = rank[𝐖̃; 𝐅̃] = 𝑁 + 1, then we can write 

𝐀 = (𝐖̃)
−1

𝐅̃. Thus the matrix 𝐀 (thereby the 

coefficients 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑁) is uniquely determined. 

Eq. (1.1) has also a unique solution under the conditions 

(1.2). This solution is given by the truncated orthogonal 

Jacobi series. Thus we get the Jacobi polynomial 

solution for the arbitrary parameters 𝛼 and 𝛽: 

 

𝑦(𝑥) ≅ 𝑦𝑁
(𝛼,𝛽)

(𝑥) = ∑ 𝑎𝑛𝑃𝑛
(𝛼,𝛽)

(𝑥)

𝑁

𝑛=0

 

 

4. Error Estimation Algorithm and Improved 

Solution 

 

One of the ultimate objectives in this study is to develop 

an error estimation algorithm for mf-IDD equations and 

to obtain an improved solution of the Jacobi polynomial 

solution. Valid here only that the improved Jacobi 

polynomial solution is found by using error estimation 

algorithm. To obtain the error estimation function of the 

initial solution, we define the residual function of Eq. 

(1.1) [19] as 

𝑅𝑁(𝑥)

= ∑ ∑𝑃𝑘𝑙(𝑥)(𝑦𝑁
(𝛼,𝛽)

)(𝑘)(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙)

𝑚2

𝑙=0

𝑚1

𝑘=0

− 𝑓(𝑥)

− ∑∑ 𝜆𝑟𝑠 ∫ 𝐾𝑟𝑠(𝑥, 𝑡)(𝑦𝑁
(𝛼,𝛽)

)(𝑟)(𝜇𝑟𝑠𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

𝑚4

𝑠=0

𝑚3

𝑟=0

+ 𝛾𝑟𝑠)𝑑𝑡 

(4.1) 

 

where 𝑦𝑁
(𝛼,𝛽)

(𝑥) is the approximate solution of the 

problem (1.1)-(1.2) for special Jacobi parameters 𝛼 and 

𝛽. On the other hand,  𝑦𝑁
(𝛼,𝛽)

(𝑥) satisfies the Eq. (1.1)-

(1.2): 

 

∑ ∑𝑃𝑘𝑙(𝑥)(𝑦𝑁
(𝛼,𝛽)

)(𝑘)(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙)

𝑚2

𝑙=0

𝑚1

𝑘=0

− ∑∑ 𝜆𝑟𝑠 ∫ 𝐾𝑟𝑠(𝑥, 𝑡) (𝑦𝑁
(𝛼,𝛽)

)
(𝑟)

(𝜇𝑟𝑠𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

𝑚4

𝑠=0

𝑚3

𝑟=0

+ 𝛾𝑟𝑠)𝑑𝑡 = 𝑅𝑁(𝑥) − 𝑓(𝑥) 

∑ [𝑎𝑖𝑘(𝑦𝑁
(𝛼,𝛽)

)(𝑘)(𝑎) + 𝑏𝑖𝑘(𝑦𝑁
(𝛼,𝛽)

)(𝑘)(𝑏)]

𝑚−1

𝑘=0

= 𝜂𝑖 ,
𝑖 = 0, 1, 2, … ,𝑚 − 1 

(4.2) 

 

The error function 𝑒𝑁
(𝛼,𝛽)(𝑥) can be defined as 

 𝑒𝑁
(𝛼,𝛽)(𝑥) = 𝑦(𝑥) − 𝑦𝑁

(𝛼,𝛽)
(𝑥) (4.3) 

 

where 𝑦(𝑥) is the exact solution of the problem (1.1)-

(1.2). Substituting (4.3) into (1.1)-(1.2) and using (4.1) 

and (4.2), we derive the error differential equation with 

homogenous conditions: 
 

∑ ∑𝑃𝑘𝑙(𝑥)(𝑒𝑁
(𝛼,𝛽)

)(𝑘)(𝛼𝑘𝑙𝑥 + 𝛽𝑘𝑙)

𝑚2

𝑙=0

𝑚1

𝑘=0

− ∑∑ 𝜆𝑟𝑠 ∫ 𝐾𝑟𝑠(𝑥, 𝑡) (𝑒𝑁
(𝛼,𝛽)

)
(𝑟)

(𝜇𝑟𝑠𝑡

𝜐𝑟𝑠(𝑥)

𝑢𝑟𝑠(𝑥)

𝑚4

𝑠=0

𝑚3

𝑟=0

+ 𝛾𝑟𝑠)𝑑𝑡 = −𝑅𝑁(𝑥) 

∑ [𝑎𝑗𝑘 (𝑒𝑁
(𝛼,𝛽)

)
(𝑘)

(𝑎) + 𝑏𝑗𝑘 (𝑒𝑁
(𝛼,𝛽)

)
(𝑘)

(𝑏)]

𝑚−1

𝑘=0

= 0 
 

(4.4) 

Solving the problem (4.4) in the same way as in Section 

3, we get the approximation 𝑒𝑁,𝑀
(𝛼,𝛽)(𝑥) to 𝑒𝑁

(𝛼,𝛽)(𝑥), 

𝑀 > 𝑁 which is the error function based on the residual 

function 𝑅𝑁(𝑥). Consequently, by means of the 

orthogonal Jacobi polynomials 𝑦𝑁
(𝛼,𝛽)

(𝑥) and 

𝑒𝑁,𝑀
(𝛼,𝛽)(𝑥), we obtain the improved Jacobi solution as 

𝑦𝑁,𝑀
(𝛼,𝛽)

(𝑥) = 𝑦𝑁
(𝛼,𝛽)

(𝑥) + 𝑒𝑁,𝑀
(𝛼,𝛽)(𝑥) (4.5) 

 

where, 𝑒𝑁,𝑀
(𝛼,𝛽)(𝑥) is the estimated error function.  
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5. Illustrative Examples 

 

In this section, we apply the new Jacobi matrix method 

to four examples by using symbolic computational 

programing MAPLE. In these examples, the terms 

|𝑒𝑁
(𝛼,𝛽)

(𝑥)| and |𝐸𝑁,𝑀
(𝛼,𝛽)

(𝑥)| represent the absolute error 

function for Jacobi polynomial solution and the absolute 

error function of the improved Jacobi polynomial 

solution, respectively. 

 

5.1. Example 1 

 

We consider the third order integro-differential 

equations 

 
𝑦′′′(𝑥) − 𝑥𝑦′(𝑥 − 1) + 4𝑦 (

1

2
𝑥 − 1) 

= 𝑓(𝑥) − 9 ∫ 𝑥𝑡𝑦′(
1
3
𝑡−1)𝑑𝑡

𝑥4+1

𝑥2−5

,   
(5.1) 

0 ≤ 𝑥, 𝑡 ≤ 1  
𝑦(0) = −2, 𝑦′(0) = 0, 𝑦′′(0) = 12 

 

where 𝑓(𝑥) = 3𝑥17 − 21𝑥9 + 72𝑥7 − 654𝑥5 +
2390𝑥3 + 6𝑥2 − 3384𝑥 + 24 and the exact solution of 

the problem is 𝑦(𝑥) = 4𝑥3 + 6𝑥2 − 2 . 

 

We assume that, for 𝑁 = 4 and (𝛼, 𝛽) = (1/2, 1 3⁄ ) 

which are chosen arbitrarily, the problem has a Jacobi 

polynomial solution in the form, 

 

 𝑦(x) = 𝐏(𝜶,𝜷)(𝑥)𝐀  

 

such that 

𝐀 = [𝑎0 𝑎1 … 𝑎𝑁]𝐓 
and

𝐏(𝜶,𝜷)(𝑥) = [𝑃0
(𝛼,𝛽)

(𝑥) 𝑃1
(𝛼,𝛽)

(𝑥) 𝑃2
(𝛼,𝛽)

(𝑥) 𝑃3
(𝛼,𝛽)

(𝑥) 𝑃4
(𝛼,𝛽)

(𝑥)] 

        =

[
 
 
 
 
 
 
 
 
 

1
1

12
+

17𝑥

12

−
35

12
+

115

24
𝑥 +

667(𝑥 − 1)2

288

−
805

96
+

1015

96
𝑥 +

7105(𝑥 − 1)2

576
+

41615(𝑥 − 1)3

10368

−
2135

128
+

1225

64
𝑥 +

10045(𝑥 − 1)2

256
+

67445(𝑥 − 1)3

2304
+

3574585(𝑥 − 1)4

497664 ]
 
 
 
 
 
 
 
 
 
𝐓

 

 

The collocation points are determined as 

{𝑥0 = 0,   𝑥1 = 1
4⁄ , 𝑥2 = 2

4⁄  , 𝑥3 = 3
4⁄  𝑥4 = 1} 

 

and from Eq. (3.1), the fundamental matrix equation of 

problem is 

𝐖𝐀 = 𝐅 

 

where 

 

𝐖 =

[
 
 
 
 
 
 
 
 
 
 4 −

16

3

56

9

89005

5184

668255

62208

4 −
265668199

6291456

2542557122971

9663676416
−

329287935484420465

237494511599616
−

3942410509449187375159

547187354725515264

4 −
298781

4096

554514379

1179648
−

13410744877075

5435817984

361276085811263

28991029248

4 −
5670779253

6291456

5644627506113

9663676416
−

2131519714347125305

712483534798848

7955921113759039089781

547187354725515264

4 −
965

12

165437

288
−

19998965

6912

8850194563

663552 ]
 
 
 
 
 
 
 
 
 
 

 

𝐅 = [24 −
13484747456509

17179869184
−

181884157

131072
−

28337926270647

17179869184
−1564]

𝐓

 

Using (3.3), we can write the matrix form of the initial 

conditions of the problem as follows 
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[𝐔 ; 𝜸]

=

[
 
 
 
 
 1

1

12
−

173

288
−

665

10368

233065

497664
; −2

0
0

17

12
0

23

144
667

144

−
7105

3456
1015

1728

−
30835

124416

−
454895

41472

;
;  

  0
12

]
 
 
 
 
 

 

 

Consequently, to obtain the solution of Eq. (5.1) under 

the initial conditions, by replacing the row matrix 
[𝐔; 𝜸], by third and fourth rows of augmented matrix 
[𝐖; 𝐅], we obtain the required augmented 

matrix [𝐖̃; 𝐆]. 
 

By solving the augmented matrix [𝐖̃; 𝐅̃], we obtain the 

Jacobi polynomial coefficient matrix 

 

𝐀 = [−
6272

111339

576

493

67392

27347

41472

41615
0]

T

. 

 

From Eq. (3.4), the Jacobi polynomial solution of the 

problem is 

 

 𝑦4
(1 2,⁄ 1 3⁄ )(𝑥) = 8 + 24(𝑥 − 1) + 18(𝑥 − 1)2 +

4(𝑥 − 1)3 which is the exact solution of the problem. 

Likewise, we can extract the exact solution of the 

problem for 𝑁 =  5 and different values of 𝛼 and 𝛽. 

 

 

 

 

 

 

5.2. Example 2 

 

We consider the first order integro-differential equations 

[3, 6] 

𝑦′(𝑥) = 𝑦(𝑥) − 2𝑦′ (𝑥 −
1

2
)

+ (𝑥 − 𝑥2)𝑦 (
1

2
𝑥 − 1) 

+∫𝑥𝑒−𝑡𝑦(𝑡)𝑑𝑡

𝑥

0

+ ∫ 𝑥𝑒−𝑡𝑦′(𝑡)𝑑𝑡

𝑥 2⁄

0

+ 𝑓(𝑥),

0 ≤ 𝑥, 𝑡 ≤ 1 
𝑦(0) = 𝑦′(0) = 1. 

(5.2) 

 

In Refs. [3, 6], 𝑓(𝑥) = −(𝑥 − 𝑥2)𝑒(
𝑥

2
−1) + 2𝑒(𝑥−

1

2
) −

𝑥2𝑒(
𝑥

2
) + 𝑥𝑒(

𝑥

2
)
, and the exact solution of the problem is 

𝑦(𝑥) = 𝑒𝑥. 

 

Table 1 shows that both Jacobi polynomial solutions 

and improved Jacobi polynomial solutions are more 

effective than other methods.  

 

In Table 2, we have presented a comparison of the 

absolute error values with the estimated absolute errors 

values, and it is seen that the error estimation is 

corrected gradually as 𝑀 increases.  

 

In Table 1 and Table 2 Jacobi polynomial solutions 

obtained for the Chebyshev base are then 𝛼 = 𝛽 =
−1/2. Chebyshev solutions are nearly the same with 

respect to the arbitrary 𝛼 and 𝛽 such that (𝛼, 𝛽) =
(1/2, 1 2⁄ ) and (𝛼, 𝛽) = (0, 1 3⁄ ). 

 

 

Table 1. Comparison of the absolute errors of the improved Jacobi method with some other numerical methods for 

Example 2. 

  

Present Method 

 Chelyshkov  

collocation 

method [3] 

Laguerre 

collocation 

method [6] 

𝑥𝑖 
 |𝑒4

(𝛼,𝛽)
(𝑥𝑖)| |𝐸4,5

(𝛼,𝛽)
(𝑥𝑖)| |𝐸4,6

(𝛼,𝛽)
(𝑥𝑖)| 

 𝑁 = 4 𝑁 = 4 

0  0 0 0  0 1.776𝑒 − 15 

0.2  1.646𝑒 − 4 2.714𝑒 − 5 2.717𝑒 − 6  2.926𝑒 − 4 3.460𝑒 − 4 

0.4  3.767𝑒 − 5 6.942𝑒 − 5 2.335𝑒 − 6  2.704𝑒 − 4 5.863𝑒 − 4 

0.6  4.714𝑒 − 4 5.886𝑒 − 5 1.289𝑒 − 5  4.497𝑒 − 4 2.228𝑒 − 4 

0.8  7.898𝑒 − 4 4.248𝑒 − 5 1.425𝑒 − 5  1.740𝑒 − 3 8.626𝑒 − 4 

1  8.507𝑒 − 4 6.759𝑒 − 5 5.301𝑒 − 7  2.432𝑒 − 3 1.876𝑒 − 4 

        

𝑥𝑖 
 |𝑒7

(𝛼,𝛽)
(𝑥𝑖)| |𝐸7,8

(𝛼,𝛽)
(𝑥𝑖)| |𝐸7,9

(𝛼,𝛽)
(𝑥𝑖)| 

 𝑁 = 7 𝑁 = 7 

0  0 0 0  0 1.998𝑒 − 15 

0.2  7.603𝑒 − 7 1.672𝑒 − 8 2.079𝑒 − 8  7.378𝑒 − 6 6.022𝑒 − 7 

0.4  1.493𝑒 − 6 1.527𝑒 − 7 2.836𝑒 − 8  1.773𝑒 − 6 1.519𝑒 − 6 

0.6  6.317𝑒 − 7 3.601𝑒 − 7 6.893𝑒 − 9  1.851𝑒 − 5 1.157𝑒 − 6 

0.8  1.797𝑒 − 6 2.488𝑒 − 7 6.128𝑒 − 8  2.969𝑒 − 5 1.133𝑒 − 6 

1  3.073𝑒 − 6 2.774𝑒 − 7 5.559𝑒 − 8  2.117𝑒 − 6 - 

 

 



 

              Celal Bayar University Journal of Science  

              Volume 16, Issue 4, 2020, p 393-401 
              Doi: 10.18466/cbayarfbe.716634                                                                                             M. M. Bahşi 

 

399 

Table 2. Comparison of the absolute error with the estimated absolute errors for Example 2. 

  
Actual Absolute 

Error 
 Estimated Absolute Errors 

𝑥𝑖  |𝑒4
(𝛼,𝛽)

(𝑥)|  |𝑒4,7
(𝛼,𝛽)

(𝑥)| |𝑒4,8
(𝛼,𝛽)

(𝑥)| |𝑒4,9
(𝛼,𝛽)

(𝑥)| |𝑒4,10
(𝛼,𝛽)

(𝑥)| 

0  0  0 0 0 0 

0.2  1.646𝑒 − 4  1.653𝑒 − 4 1.645𝑒 − 4 1.645𝑒 − 4 1.646𝑒 − 4 

0.4  3.767𝑒 − 5  3.917𝑒 − 5 3.783𝑒 − 5 3.765𝑒 − 5 3.767𝑒 − 5 

0.6  4.714𝑒 − 4  4.708𝑒 − 4 4.710𝑒 − 4 4.714𝑒 − 4 4.714𝑒 − 4 

0.8  7.898𝑒 − 4  7.916𝑒 − 4 7.896𝑒 − 4 7.898𝑒 − 4 7.898𝑒 − 4 

1  8.507𝑒 − 4  8.476𝑒 − 4 8.504𝑒 − 4 8.507𝑒 − 4 8.507𝑒 − 4 

 

5.3. Example 3  

Let us consider the Volterra type integro differential 

equation  

𝑦′(𝑥) = ∫ (cos(𝑥 + 𝑡 + 1) + 2)𝑦(𝑡)𝑑𝑡

𝑥

𝑥−1

+ 𝑔(𝑥), 0 ≤ 𝑥 ≤ 3 

(5.3) 

 

with the initial condition is 𝑦(0) = 1 and 𝑓(𝑥) =

3𝑐𝑜𝑠(𝑥) −
1

4
cos(3𝑥 + 1) − 2 +

1

2
sin(𝑥 + 1) +

sin(2𝑥) − 2 cos(𝑥 − 1) +
1

4
cos(3𝑥 + 1) − sin (2𝑥 +

1). The exact solution of the problem is 𝑦(𝑥) =
sin(𝑥) + 1 [6]. 

Table 3 is shown the absolute error values of Jacobi 

polynomial solutions both direct solution for 𝑁 = 10 

and improved solutions for 𝑀 = 12 and 𝑀 = 14 in 

domain interval of the problem. And also, Table 3 is 

given comparison of the absolute errors values of the 

present method with Taylor collocation and Laguerre 

collocation methods. 

Figure 1 is shown the comparison of exact solution and 

Jacobi polynomial solutions (𝑁 = 4, 5 and 6) and it is 

clearly seen form the figure that the numerical solutions  

 

 

 

close the exact solution when 𝑁 increases in [0,3] 
domain. 

 

Jacobi polynomial solutions are obtained for the 𝛼 = 0 

and 𝛽 = −1/2. And also Legendre and Chebyshev 

solutions are obtained. For N=10 the absolute errors of 

the Legendre base solution is  
7.254𝑒 − 9 and the absolute Chebyshev base solution is  
8.226𝑒 − 9 while the Jacobi polynomial solution is  
7.095𝑒 − 9. 

 

5.4. Example 4  

 

Consider the first order integro-differential equation 

𝑦′(𝑥) = 2𝑒1−𝑥 − 3𝑦(𝑥) − 3 ∫ 𝑦(𝑡)𝑑𝑡

𝑥

𝑥−1

 

− ∫ 𝑦′(𝑡)𝑑𝑡

𝑥

𝑥−1

, 0 ≤ 𝑥, 𝑡 ≤ 2 

(5.4) 

under the initial condition 

 𝑦(0) = 1.  

with the exact solution 𝑦(𝑥) = 𝑒−𝑥 [6, 20, 21]. 

 

Table 3. Comparison of the absolute errors of the improved Jacobi method with some other numerical methods for 

𝑁 = 10 and for (𝑁,𝑀) = (10, 12), (10, 14) for Example 3. 

  

Present Method 

 
Taylor collocation method 

[20] 

Laguerre 

collocation 

method [6] 

𝑥𝑖  |𝑒10
(𝛼,𝛽)

(𝑥)|  |𝐸10,12
(𝛼,𝛽)

(𝑥)| |𝐸10,14 
(𝛼,𝛽)

(𝑥)| 
 16 

collocation 

points 

25  
collocation 

points 
𝑁 = 10 

0.5  7.095𝑒 − 9  2.494𝑒 − 9 3.564𝑒 − 11  1.04𝑒 − 6 1.0𝑒 − 9 1.130𝑒 − 08 

1.0  7.034𝑒 − 9  3.428𝑒 − 9 5.276𝑒 − 11  2.13𝑒 − 6 7.0𝑒 − 9 2.152𝑒 − 08 

1.5  5.704𝑒 − 9  4.999𝑒 − 9 7.585𝑒 − 11  3.03𝑒 − 6 1.3𝑒 − 8 7.639𝑒 − 09 

2.0  1.010𝑒 − 8  8.162𝑒 − 9 1.240𝑒 − 10  4.12𝑒 − 6 2.6𝑒 − 9 4.280𝑒 − 10 

2.5  1.957𝑒 − 8  1.628𝑒 − 8 2.474𝑒 − 10  6.19𝑒 − 6 4.7𝑒 − 7 5.046𝑒 − 07 

3  1.476𝑒 − 7  3.304𝑒 − 8 5.484𝑒 − 10  1.0𝑒 − 5 8.9𝑒 − 5 2.108𝑒 − 05 
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Figure 1. Comparison of exact solution and Jacobi polynomial solutions (𝑁 = 4, 5 and 6) for Example 3.  

 

Table 4. Comparison of the maximum absolute error values with Jacobi collocation method and Spline collocation 

method (via various collocation parameters) and Laguerre collocation method for Example 4. 

Maximum absolute error values 

Spline collocation method - Gauss I 

(by using collocation points 30) [6, 21] 
8.33𝑒 − 9  

 Spline collocation method – Gauss I 

(by using collocation points 60) [6, 21] 
1.30𝑒 − 10 

Spline collocation method – Radau II  

(by using collocation points 30) [6, 21] 
1.43𝑒 − 7  

Spline collocation method – Radau II 

(by using collocation points 60) [6, 21] 
4.67𝑒 − 9 

Spline collocation method – Lobatto  

(by using collocation points 30) [6, 21] 
1.81𝑒 − 6  

Spline collocation method - Lobatto 

(by using collocation points 60) [6, 21] 
1.13𝑒 − 7 

Spline collocation method – Gauss I  

(by using collocation points 20) [6, 21] 
9.10𝑒 − 7  

Spline collocation method – Gauss I 

(by using collocation points 40) [6, 21] 
6.57𝑒 − 8 

Spline collocation method – Other  

(by using collocation points 30) [6, 21] 
4.25𝑒 − 6  

Spline collocation method – Other 

(by using collocation points 60) [6, 21] 
5.85𝑒 − 7 

Laguerre collocation method 

(by using collocation points 10) [6] 
4.80𝑒 − 8  

Laguerre collocation method  

(by using collocation points 15) [6] 
2.93𝑒 − 10 

Present Method 

(by using collocation points 10)  
2.93𝑒 − 9  

Present Method 

(by using collocation points 15) 
1.31𝑒 − 11 

 

It is seen clearly from Table 4 that the Jacobi 

polynomial solution gives better results with respect to 

Laguerre collocation method [6] and Spline collocation 

method for the collocation parameters for Gauss, Radau 

II, Lobatto, Gauss I and named as Other [21].  

 

6. Conclusion 

 

This study presented a new numerical method for 

solving multi-functional integro-differential equations 

with mixed delays. This method is based on Jacobi 

polynomials and matrix operations. From the obtained 

numerical results, it was concluded that the obtained 

results are excellent in terms of accuracy and 

corrections for all four tested problems. The main  

 

 

advantage of the Jacobi collocation method is that it is 

easily programmable by using symbolic codes.  

 

Therefore, the results of the problems are obtained 

quickly. Another advantage of the method is that the 

absolute error value of the obtained solutions decreases 

when 𝑁 is increased. Estimated absolute error functions 

are obtained for the Jacobi Polynomial solutions 

obtained by the error estimation algorithm given Section 

4. 
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