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Maximizing the fuel economy while lowering exhaust emissions highly depend 

on precise air-fuel ratio (AFR) control. The major challenge in the control of AFR 
is the time-varying delay, which is an inherent reason for performance degradation 

and instability. For analysis, the time delay is approximated by Padé 

approximation, leading to a non-minimum phase system that exhibits the difficulty 
of controlling due to its zeroes in the right half side of the s-plane. Moreover, 

dealing with uncertainties in fuel-path dynamics and minimizing the effect of 

external disturbances are key goals in the minimization of harmful emissions and 

maximization of fuel economy. This study puts forward an AFR control strategy 
in lean-burn spark-ignition (SI) engines by proposing a genetic algorithm (GA)-

based proportional-integral (PI) control technique. The proposed PI controller 

aims at dealing with the aforementioned design challenges. The PI controller 

gains, namely, proportional (𝐾𝑝), integral (𝐾𝑖) gains are obtained with the 

proposed GA algorithm based on minimization of an objective function. The GA-
based PI controller’s performance is analyzed with several methods in time-

domain study. According to the obtained results, it has been revealed that the 

proposed GA-based PI controller improves the reference air-fuel ratio tracking 
performance in the existence of the time-varying delays in the closed-loop system, 

exhibiting good disturbance rejection properties, and is robust against system 

uncertainties. Thus, it can be effectively used for the accurate regulation of AFR 

under various operating conditions in SI engines. 
Keywords: Air-fuel ratio, genetic-algorithm, PI control, time-delay systems, non-minimum phase 
systems. 

 

1. Introduction 

Due to the stringent requirements for engine 

emissions in recent years, research in reducing 

emissions and enhancing fuel economy has 

received significant attention. Lean-burn spark-

ignition (SI) engines offer better improvements 

in tailpipe emissions and fuel economy among 

conventional spark-ignition engines. It is of a 

great importance to maintain air-fuel ratio 

(AFR) at up-stoichiometric value for reduced 

carbon monoxide and hydrocarbons but leading 

to increased nitrogen oxide (NOx), stored in 

three-way-catalyst (TWC). TWC conversion 

efficiency heavily depends on the AFR 

reference. In fact, TWC is located downstream 

the universal exhaust gas oxygen (UEGO) that 

requires to integrate after-treatment system 
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dynamics in maintaining the AFR reference, 

thus posing challenges in engine control 

methods. This is due to feedback control, using 

the signal from the UEGO sensor in the exhaust 

stream to regulate the AFR value. This 

introduces an engine speed-dependent time-

varying delay for exhaust gas exiting the 

cylinders to be measured in UEGO sensor for 

the AFR control system. Due to the time-

varying delay, wide operation ranges of the 

engine, nonlinearities, and parameter variation, 

achieving an optimal performance remains a 

difficult engine control system problem for lean-

burn engines. To this end, we investigate 

engine-speed dependent lean-burn SI analysis to 

propose a suitable control technique in this 

work.  

There has been a great number of efforts 

addressing the AFR control in literature [1-3]. 

The authors propose a parameter-varying 

proportional-integral-derivative control method 

in [4]. The work in [5] proposes an adaptive 

stoichiometric AFR control. A generalized 

predictive control is proposed for the AFR 

regulation by taking time delays, nonlinearities, 

and parameter variations into account in the 

closed-loop in [6]. The work [7] addresses an 

experimental AFR control with the unknown 

system dynamics estimator. In the lean-burn 

AFR problem, there are many contributions. A 

second-order sliding mode control is utilized in 

the AFR problem considering the negative 

impacts of time-varying delay, measurement 

noise, and canister purge disturbance in [8]. 

Authors propose a fuzzy sliding‐mode control 

strategy to maintain AFR reference in the 

presence of time-varying delay, uncertainties, 

and disturbances in [9]. A linear parameter 

varying (LPV) control of the AFR problem is 

investigated by presenting the engine model as 

an LPV time-delay system. Their goal is to track 

the AFR set-point changes to the stoichiometric 

AFR by minimizing the effects of disturbances 

and time-varying delays [10-12]. It is important 

to take into account the state delay in the 

controllers such that the expected control 

performance is achieved. 

Among many types of controllers used for 

engine control, the proportional-integral (PI) 

controller is the most widely used controller due 

to its simple structure and design, low cost in 

maintenance, effectiveness, and intrinsic 

characteristics against model nonlinearities, 

uncertainties, and parameter variations [13]. 

The PI controller has two parameters, so-called 

proportional gain (𝐾𝑝) and integral gain (𝐾𝑖). 

Precise tuning of these parameters is needed to 

obtain optimal system performance. In case of 

poor tuning, bad performance or even instability 

is inevitable. Soft computing is a good strategy 

to design and optimize the PI controller gains. It 

has many advantages, for example, many design 

considerations can be incorporated in a unified 

way [14]. Even though heavy computational 

burden and convergence to an optimal solution 

receive critics by researchers, for a small-scaled 

problem, for instance, PI controller parameter 

optimization is presenting no issue in 

computation. Genetic Algorithm (GA) is a type 

of soft computing, which is an evolutionary 

algorithm to solve many optimization problems. 

Many fruitful applications are reported [15-18]. 

In GA, candidate solutions are presented by a 

population of chromosomes. Using a fitness 

function, their quality is evaluated at each 

iteration.  In the next step, the selection 

mechanism chooses the best ones as parents. 

Through crossover and mutation mechanism, 

parents produce offspring. Found offspring are 

a new solution to the problem. These steps are 

repeated until the optimal solution has been 

found in a pre-defined error bound.   

In this brief, the problem of the AFR regulation 

is investigated in SI engines using a control 

strategy based on the GA-based PI controller for 

the first time. Major highlights of this work are 

summarized as follows. 

1. A simple and straightforward control 

system design based on a heuristic optimization 

for the robust AFR control in the existence of 

time-varying delay, system parameter 

variations, and external disturbances is 

introduced.  

2. An extensive simulation study to 

validate the control strategy is put forward. 

3. Convergence to an optimal solution is 

found, thus GA’s reliability and fast 

optimization speed are obtained. 

The paper is structured as follows. Section 2 

describes the system dynamics and time-delay 

model for the control design and puts forward 

the new GA-based PI controller. Section 3 

illustrates the simulation results and an 

extensive discussion is provided. Lastly, we 
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draw the conclusions in Section 4. 

2. Modelling 

Precise control of the AFR becomes necessary 

to minimize the effect of emission gases 

converted to relatively less harmful compounds 

in the TWC. Thus, the TWC is a key component 

on the exhaust after-treatment part, which 

reduces the tail-pipe emission to meet 

government’s strict legislation. In order to 

achieve this, proper modeling is necessary for 

the AFR regulation. The TWC operates 

efficiently when the fuel matches to air charge 

in stoichiometric proportion. In this work, only 

air-fuel dynamics are demonstrated. The engine 

air-fuel path can be modeled as the structural 

properties of the air-fuel path. This path includes 

several considerations to be taken into account 

from wall wetting dynamics to the UEGO 

sensor dynamics. A schematic description of the 

fueling path is shown in Figure 1. 

 
Figure 1: Air-fuel path in SI engine adopted from [8]. 

As the fuel is injected into the cylinders, some 

of the amounts directly evaporate, which form 

fuel film in the intake port. The rest of the fuel 

puddle injected into the cylinder also 

evaporates. This situation is described as the so-

called wall-wetting effect in the system. The 

vaporized fuel mixes with the air and forms the 

air-fuel mixture. After the combustion, the 

exhaust gases exit the cylinder, they mix with 

the previously existing exhaust gases and travel 

through the exhaust manifold and reach the 

UEGO sensor location. Also, in a multi-cylinder 

engine, the exhaust gases coming from the 

individual cylinders enter the exhaust manifold 

at different times. Thus, time-varying delay in 

the design consists of two parts: i) cycle delay 

𝑇𝑐𝑦𝑐 due to the four strokes of the engine stated 

as 𝑇𝑐𝑦𝑐 = 720/(360/60)𝑁 =  120/𝑁 (𝑠𝑒𝑐𝑠) 

where 𝑁 is the engine speed, and ii) exhaust gas 

delay 𝑇𝑒𝑥𝑡 where the time it takes for the exhaust 

gases to reach the UEGO sensor location given 

as 𝑇𝑒𝑥𝑡 = 𝜗/�̇�𝑎 where �̇�𝑎 is the air-mass 

follow and variable 𝜗 is to be determined with 

experiment [19]. Then the total time-varying 

delay is 𝑇 = 𝑇𝑐𝑦𝑐 + 𝑇𝑒𝑥𝑡. Also, the UEGO 

sensor dynamic has a first order lag 𝐺(𝑠) =
1/(𝑘𝑠 + 1) with 𝑘 is the time constant. After 

having taken into account all these 

considerations, we limit the discussion on the 

modeling of having a proper model for control 

design purposes. Thus, the air-fuel path 

dynamics including the UEGO sensor dynamics 

with the total time delay is expressed as 

𝑘�̇�(𝑡) + 𝑦(𝑡) = 𝑢(𝑡 − 𝑇) (1) 

where 𝑦(𝑡) and 𝑢(𝑡) are the actual and input 

AFR, seen in Figure 2. 

2.1. PI control and time-delay modeling 

The PI controller with its proportional (𝐾𝑝) and 

integral (𝐾𝑖) gains is given in the form of a 

transfer function in Eq. (2). 

𝐺𝑃𝐼(𝑠) =
𝑢(𝑠)

𝑒(𝑠)
= 𝐾𝑝 +

𝐾𝑖

𝑠
.   (2) 

In Eq. (2), the PI gains need to be properly tuned 

to obtain the best system performance, i.e, short 

transient and stability for the closed-loop 

system, demonstrated in Figure 2. Ziegler-

Nichols method has been extensively studied for 

optimal tuning of the PI controller parameters. 

However, these parameters need to be manually 

tuned until prescribed system specifications are 

met. This motivates us to utilize a global 

optimization strategy for the PI controller 

parameters selection over the entire operation 

ranges. 

 
Figure 2: Closed-loop structure. 

𝑒−𝑇𝑠 =
1−

𝑇

2
𝑠

1+
𝑇

2
𝑠
.     (3) 

The Padé approximation is introduced to 

approximate the time delay, leading to a transfer 

function presentation so-called a non-minimum 

phase system. For the control of AFR in this 

study, the delay dynamics is approximated by a 

first of Padé approximation as shown in Eq. (3): 

Recall that 𝑇 is the time delay in the AFR 
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control problem. A higher-order Padé 

approximation might have been used at the cost 

of increased complexity in the control design. 

Using the Padé approximation, the Eq. (1) is 

rewritten as 

𝐺(𝑠) =
1−

𝑇

2
𝑠

(1+
𝑇

2
𝑠)(1+𝑘𝑠)

.    (4) 

This transfer function is called as a non-

minimum phase system and introduces control 

design challenges due to the zeros being in the 

right half side of the s-plane. 

2.2. Objective function/fitness function 

In this study, the designed PI controller aims to 

optimally improve the dynamic behavior of the 

closed-loop system. The objective function 

should include percent overshoot 𝑀𝑝, rise time 

𝑡𝑟, settling time 𝑡𝑠, and steady-state 𝐸𝑠𝑠  control 

criterias. They are the main performance 

indicators for the AFR control problem to have 

the minimum values of these criteria to a unit 

step response. In this study, the performance is 

measured using an integral time-weighted 

squared error (ITSE) function of the tracking 

error for a step reference under time-delay and 

disturbances, combined with a measure of the 

energy of the incremental control in Eq. (5). 

𝐼𝑇𝑆𝐸 = ∫ 𝑡|𝐴𝐹𝑅𝑟𝑒𝑓 − 𝐴𝐹𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|
2𝑡

0
𝑑𝑡 =

∫ 𝑡|𝑒|2𝑡

0
𝑑𝑡.     (5) 

2.3. Genetic algorithm 

Genetic algorithm [20] was presented to the 

science by John Holland in 1975. It is an 

important heuristic algorithm, which is based on 

the populations of chromosomes in living things 

and working according to the evolutionary 

process in nature. The survival principle of 

strong individuals is the main goal. GA 

produces a set of multiple independent 

solutions. This set of solutions is called the 

population. Populations are made up of strings 

of numbers called chromosomes or individuals. 

Every element in an individual is a gene. To find 

the optimum point with the genetic algorithm; 

reproduction, crossing, and mutation processes 

are created code based on gene structure. These 

codes are called chromosomes. These are 

selected according to the normalized fitness 

function. This stage is the breeding stage. Then, 

the crossover phase is started. In the crossover 

stage, chromosomes are crossed to produce new 

individuals. By crossing, it is transmitted to new 

generations with superior features. In order to 

reach the global optimum, it is important to 

carry superior features to new generations. Also, 

the mutation is performed by changing any bit 

of information on the chromosome. The above-

mentioned process steps are repeated until the 

termination criteria is met. 

 
Figure 3: Genetic algorithm structure [21-27]. 

In this study, two parameters of the PI controller 

need to be optimized under a multi-objective 

optimization within a certain bound. The basic 

operations are summarized as follows. 

I) Initialization: Initial population. 

II) Individual evaluation: The fitness of 

each individual is calculated. 

III) Selection: Passing the optimized 

individuals to the next generation through 

pairing and crossing.  

IV) Crossover operation: Exchanging of 

design parameters between the paired 

individuals. 

V) Mutation operation: Exchanging the 

gene value between the paired individuals.  

VI) Termination: When no significant 

chance is observed in evaluation of the fitness 

function is achieved.  

The GA flow chart visually demonstrates the 

above process in Figure 3. 
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3. Results and Discussion 

As stated, we use the ITSE fitness function in 

the optimization of the PI parameters that are 

calculated with GA algorithm with selected a 

sample time of 0.001 secs and the total time of 

simulation duration is 10 secs. GA is known for 

finding a global solution. It generates a set of 

population points at each iteration. This 

generation is a random process thus the solution 

is highly affected according to the random 

population generation. The tuning parameters 

for the GA are: number of variables is being 2, 

population size is set to 50 with the elite count 

is being 50. Moreover, the crossover fraction is 

0.2 along with a maximum generation as being 

25. The optimization of the PI controller is 

stated as follows. By using the fitness function 

in Eq. (5), the values of 𝐾𝑝 and 𝐾𝑖 are encoded 

as a chromosome in GA to minimize the settling 

time and overshoot based on the response 

characteristic, shown in Figure 4. New 

generation is then evaluated their quality based 

on their objective value. Selection, crossover, 

and mutation operations are re-performed until 

design specifications are met. 

 
Figure 4: GA solution to find optimal PI controller 

parameters. 

The optimal parameters after several runs in 

MATLAB software are calculated as 𝐾𝑝 =

0.2356, 𝐾𝑖 =   0.2234. The simulations under 

different operating conditions are performed to 

confirm the performance of the proposed control 

strategy. To this end, the engine time constant is 

chosen as 𝑘 = 0.2. Time-varying delay is 0.3 ≤
𝑇 ≤ 2.7 in the design. In addition, the lean 

normalized AFR ratio is chosen as 1.4. The 

simulations are performed on a Fujitsu desktop 

equipped with Intel Core i5 3.0 GHz CPU and 8 

GB of RAM running MATLAB 2018a. The step 

response is one of the common tools for 

validating a controller performance. To this 

extent, we first demonstrate the step responses 

for different uncertainty levels, i.e., ± 20% 

change in the time constant of the fuel-path 

dynamics in Figure 5. As seen in the plots, GA-

based PI controller settles around 4-5 seconds. 

 
Figure 5: Step response subject to the time constant 

change. 

Results show that higher time constants result in 

a slight overshoot. However, in the steady-state, 

both cases represent no changes. This is indeed 

quite satisfactory result not only in the speed of 

the response viewpoint but also a robust stability 

viewpoint in the presence of uncertain system 

dynamics. The varying delay of the engine 

restricts performance specifications in the 

control loop. Therefore, the presence of time 

delays typically imposes strict limitations on the 

control design. There are several methods of 

dealing with the negative impacts of time-

varying delays. To ensure that the robust 

stability of the closed-loop system, similarly to 

the time constant uncertainty analysis, the 

simulations are performed for ± 20% change of 

the delay estimation change in Figure 6. Results 

show that higher-delay estimation error leads to 

a little faster transient response and no 

significant change is observed in the steady-

state response of the closed-loop system.  

 
Figure 6: Step response subject to the time-varying delay 

change. 
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Conversely, smaller delay estimation error is 

lower than the actual time delay value and it 

presents sluggish response in the transient 

response but no important change is observed in 

the steady-state response. Based on the above 

analysis, it is concluded that the proposed GA-

based PI controller can be effectively used under 

different operation conditions. 

The main control objective of the AFR problem 

is to minimize the tracking error in the existence 

of external disturbances and delays [8, 28]. It is 

worth mentioning that there are not reported 

results of the heuristic optimization-based PI 

controller design to quantitatively compare the 

AFR results to the best of author’s knowledge, 

yet this article is intended to open a new research 

direction for heuristic optimization-based PI 

controller design for the AFR control. Then the 

canister purge and fuel injector disturbance 

profile is given in Figure 7. The closed-loop 

tracking performance of the designed controller 

is demonstrated in Figures 8-11. The following 

simulation results demonstrate the tracking 

enhancement of the controller. As observed in 

Figure 8, the proposed controller provides 

smooth tracking, which is subject to a 20% 

change in the time constant. Evidently, transient 

response to higher and lower time constants 

leads to almost no change in response, zoomed 

in Figure 9. To further investigate the controller 

performance in a practical setting, AFR system 

responses to a  20% change [1, 4] in the time-

varying engine delay are evaluated in Figure 10. 

It is trivial to demonstrate that even if the delay 

takes the maximum value, i.e., + 20% the 

controller stabilizes the plant as expected, a 

slight overshoot is observed with satisfactory 

tracking in the presence of external disturbances 

[2, 8, 12], as shown in Figure 11. It is observed 

that there is no significant change even when we 

assume a − 20% change in the time-varying 

delay, demonstrating that the system response is 

a bit sluggish over transient conditions. Figures 

12-15 show the corresponding control inputs 

subject to a 20% change in the time constant and 

time-varying delay. Control input for ± 20%  

change in the time constant is almost the same 

as that of the nominal case, which means no 

significant fuel economy deterioration during 

the period of fuel injection [8, 9], seen in Figures 

12-13. Moreover, Figure 14 shows that the 

effect of the change in time-varying delay on the 

corresponding control signal, which leads to an 

increase over transient conditions. An increase 

in fuel consumption is observed for + 20% 

change in the time-varying delay over transient 

conditions, zoomed in Figure 15. Nevertheless, 

control inputs exhibit robustness against 

disturbances and parameter variations in the 

AFR fuel-path dynamics [4, 12, and 28]. It is 

clearly stated that the proposed GA-based PI 

controller can be effectively employed under 

various working conditions [6]. 

 
Figure 7: Fuel injector and canister purge disturbance 

profile. 

 
Figure 8: Output tracking response subject to the time 

constant change. 

 
Figure 9: AFR output tracking response subject to the 

time constant change (zoomed between [0 50] seconds). 

4. Conclusion 

In this paper, a genetic algorithm (GA)-based 

proportional-integral (PI) control methodology 

for air-fuel ratio (AFR) control of lean-burn 

spark-ignition engines with the engine time-

varying delay is introduced. The fuel-path 

dynamics is modeled as a first-order system 
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with the time-varying delay where the Padé 

approximation is utilized to present the overall 

system as a non-minimum phase system. GA-

based optimization algorithm is used to tune the 

PI controller parameters where the optimization 

is performed offline using a simulation model of 

the fuel-path dynamics with time-varying delay. 

Then the optimized PI controller is applied to 

the system. 

 
Figure 10: AFR output tracking response subject to the 

time-varying delay change. 

 
Figure 11: AFR output tracking response subject to the 

time-varying delay change (zoomed between [0 50] 

seconds). 

 
Figure 12: Control input subject to the time constant 

change. 

 
Figure 13: Control input subject to the time constant 

change (zoomed between [0 50] seconds). 

Time response results to a given step input are 

used to validate the controller performance 

under different working conditions to test the  

 
Figure 14: Control input subject to the time-varying 

delay change. 

 
Figure 15: Control input subject to the time-varying 

delay change (zoomed between [0 50] seconds). 

controller robustness. We first demonstrate the 

step responses for different uncertainty levels, 

i.e., ± 20% change in the time constant of the 

fuel-path dynamics. It is observed that transient 

response to higher and lower time constants 

leads to almost no change in response. 

Moreover, a ± 20% change in the time-varying 

delay bounds is tested where higher delay 

estimation errors result in a little faster transient 

response yet no significant change is observed 

in the steady-state response of the closed-loop 

system. Since the main control objective of the 

AFR problem is to minimize the tracking error 

in the existence of external disturbances and 

delays, the closed-loop system performance 

against uncertainty in the time constant and 

time-delay under the canister purge disturbance 

is studied. To this aim, the closed-loop 

performance is evaluated in the presence of 

various operating conditions, i.e., the AFR 

system responses to a  ±20 %  change in the 

engine time constant as well as to a ±20 % 

change in the time-varying engine-speed-

dependent delay under the fuel purge 

disturbance. The GA-based PI controller shows 

robustness against the  ±20 change in the time 

delay and time constant. Further, we study the 
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control inputs subject to a 20% change in the 

time constant and time-varying delay. It is 

revealed that no significant fuel economy 

deterioration during the period of fuel injection 

is observed. Thus, control inputs exhibit 

robustness against disturbances and parameter 

variations in the AFR fuel-path dynamics, 

demonstrating that the proposed GA-based PI 

controller can be effectively applied under 

various working conditions. It has been 

concluded through the simulation study that the 

proposed controller is capable of regulating the 

closed-loop AFR under system parameter and 

time-varying delay changes as well as external 

system disturbances. 
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