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Article Info Abstract: Türkiye has ideal ecological conditions for growing rice, and its yield 
per hectare is often higher than the average worldwide. However, unbalanced 
fertilization, nutrient deficiency, and irrigation problems negatively affect paddy 
production when soil characteristics are not considered. The present study was 
conducted on a 1763-hectare field (652000-659000E-W and 4528000-4536000N-
S) in 2019. This study's primary goal was to categorize land quality for rice 
production using 15 different physicochemical parameters and a GIS 
(Geographical Information Systems) and deep learning (DL) technique. Using 
these parameters soil types were classified and regression analysis was performed 
by DL. Different soil parameters as network outputs used in this study caused 
different performance levels in models. Therefore, different models were 
suggested for each network output. The R2 values indicated a respectable level for 
parameter prediction, and an accuracy of 88% was attained when classifying 
"class" data. The findings of the study demonstrated that deep learning may be 
used to forecast soil metrics and distinguish between different land quality classes. 
Additionally, a field investigation was used to validate the indicated land quality 
classifications. Using statistical techniques, a substantial positive link between 
rice yield and land quality classes was discovered. 
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1. Introduction  

Rice, a warm climate grain (Oryza sativa L.) is the main food source for 50% of the world's 
population (Sirat et al., 2012; Akay et al.,2017). Although rice cultivation is conducted in all 
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geographical regions in Türkiye, 56.0% of the total rice area is in the Thrace-Marmara region, 36.5% in 
the Black Sea region, and 7.5% in other regions (Meral and Temizel 2006; Garris et al., 2005)  

Considering different scenarios derived from climate change models, food security is the most 
pressing issue in densely populated developing countries (Jagadish et al., 2007). A great effort has been 
exerted to meet the nutritional needs of the growing population in developing countries in terms of 
achieving consistently high yield rates (Araus and Cairns, 2014). In addition, the specification and 
classification of plant diseases are one of the most vital methods for early-stage intervention to increase 
yield (Shrivastava et al., 2019). It also ensures the ecological sustainability of soil types, which is one 
of the important components in both the economic and terrestrial ecosystem, as well as the use of 
produce considering land needs, its management, yield, and increase in quality. Therefore, important 
studies have been conducted on soil and land quality index approaches in recent years. The main 
characteristics of the alluvial land and soils which are widely classified as fluvent sub order of the Entisol 
order often show large variations in their features such as textural or organic matter distribution over 
short distances (Dengiz 2010). Identifying land quality is actually a difficult process. The reason for the 
complex relationship is between the physical, chemical, and biological properties of the soil and other 
factors. Many studies have been conducted to search the relationships between physical, chemical, and 
biological properties of soil types and yield (Dengiz 2013; Li et al., 2018; Dedeoğlu and Dengiz, 2019; 
Mwendwa et al., 2019; Rezaee et al., 2020). While it is possible to assess land quality by directly 
conducting land testing, several modal approaches such as comparative assessment, dynamic 
assessment, and land quality index (LQI) can be used indirectly. Since direct approaches are generally 
expensive, labor-intensive, and time-consuming, modal approaches are used more often (Dengiz 2020). 
Land Quality Index(LQI) approach was used in the rice land assessment. In this approach, the land 
quality index assessment process, which usually starts with the creation of a data set, is graded by giving 
score ratios according to the severity of limiting plant growth on indicators with different units. In 
addition, the possibility of the deep learning system, which had never been used before in rice land 
quality studies, was investigated in this study. 

Deep learning is a modern and popular technique for image processing and data analysis with 
promising results and great potential. Deep learning, which has been successfully applied in various 
fields, has recently been used in precision agriculture applications (Kamilaris 2018). To give an example 
of these studies, computer-aided diagnosis (CAD) systems, using AI (Artificial Intelligence), were used 
in order to accurately identify diseases and pests affecting small farmers' production and also to help 
understand the severity of symptoms, as well as allowing any farmer with access to a smartphone to 
benefit from expert knowledge in a practical and cost-effective manner (Esgario et al., 2020).   

Azizi et al. (2020) used a convolutional neural network (CNN), a deep learning method, to 
classify soil clusters while they used VggNet16, ResNet50, and Inception-v4 trained models to train 
CNN.  Esgario et al. (2020) used deep learning to classify biotic stress in coffee and to estimate its 
severity. The ResNet50 produced a high accuracy rate of 95.24%. Padarian et al. (2019) used deep 
learning to predict soil properties from regional spectral data and this study in which they used CNN 
showed that it could be reduced by 87% compared to predicting soil properties (PLS), a traditional 
method. in deeper soil layers with a high accuracy rate.  

The decrease in land quality due to intensive rice cultivation threatens the sustainability of rice 
agriculture in the Çorum-Osmancık region of Türkiye. In the present study, we focused on identifying 
detailed rice land quality classes and mapping their spatial distributions in order to perform sustainable 
rice agriculture practices. The possibility of using the deep learning technique,  accompanied by 
geographic information systems and geostatistics to determine the land quality classes for rice 
production has been investigated in this study. The identification of land quality classes has also been 
validated with data collected from field studies. 

2. Material and Methods  

2.1. Study Area 

The study area is located within the boundaries of Çorum- Osmancık district, in the Kızılırmak 
Valley of the Western Black Sea region, and between the coordinates 652000-659000E-W and 4528000-
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4536000N-S (WGS84, Zone 36 UTM-m). The study area covers approximately 1,763 ha and is between 
399-480m above sea level (Figure 1). 

 

 

 
Figure 1. Soil sample pattern and location map of the study area. 

The study area is located in a transition area between the Black Sea and Central Anatolian 
climate regimes and falls into the semi-arid climate class. The physico-chemical properties of the study 
area were assessed in terms of the coefficient of variation (CV) which clearly indicated that the soil 
properties were highly variable.  

The region is surrounded by Ilgaz Mountains, which extends through the east-west direction, 
from the west, and by its extensions and Koroglu Mountains from the south. The geological structure of 
these mountainous areas in the region is generally composed of Paleozoic metamorphic rocks. The wide 
valley bottom plains through which Kizilirmak (the Halys river) flows, make up alluvial deposits 
belonging to the Quaternary period. Generally, rice is grown on soil formed on these alluvial deposits. 
The study area is mostly flat or slightly inclined (0.0-2.0%). A total of eight soil series have been 
identified in the study area. Dengiz et al., (2009), defined 29 mapping units according to the digital soil 
map they created (Figure 2). 
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Figure 2. Slope and soil map of the study area. 

2.2. Soil sampling and indicator selection 

In this study, a total of 246 soil samples, disturbed and undisturbed sampling from the surface 
(0-30 cm), with distributed soil types of Vertiso, Entisol, and Inceptisol were collected from the grid 
points (400 m x 400 m) created. Soil samplings were conducted especially in the autumn after the 
harvest, in order to avoid the effects of soil management processes such as fertilization and irrigation 
during the rice-growing period. Each mapping unit (land mapping units) defined with its unique soil and 
land properties significantly affects the suitability of the determined land utilization type to the land. 
Therefore, it is necessary to identify the land needs of each land utilization type for a successful and 
sustainable agricultural practice. 

The land utilization type investigated in this study is rice. Some literature sources were 
examined in order to identify the land needs of rice and soil physicochemical and topographic indicators 
required for the model (FAO, 1983 and 1985; Sys et al., 1993, Mongkolsawat et al., 2002, Bunting, 
1981; Dengiz, 2013; Sezer and Dengiz, 2014; Dengiz et al., 2015; Nath et al., 2016). The development 
of the rice plant depends on the physical and chemical conditions of the soil type that affect the plant's 
root system and affects ability to grow efficiently. Therefore, Moron (2005) stated that the indicators 
used in soil quality identification should be sensitive enough to track changes and be easily measured 
and interpreted. Fourteen quality parameters fall into two different main categories for the rice land 
quality index model (LQIR). These are i-(Nutrient Availability Index (NAI) (including nitrogen, 
phosphorus, potassium, and zinc content in the soil), ii-) soil quality index (SQI) (including slope, soil 
depth, bulk density, clay, silt, sand, hydraulic conductivity (HC), organic matter, electrical conductivity 
(EC), lime-CaCO3, and soil reaction-pH (Table 1). Table 1 shows the analytical protocols used. 
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Table 1. Analytical Protocol measurements for indicators 
Indicators Unit Protocol Reference 

Soil quality indicators 
Soil Depth cm From soil map Dengiz et al. (2009) 
Slope % From DEM Dengiz et al. (2009) 
BD gr cm-3 Undisturbed condition Blacke and Hartge, 1986 
HC cm h-1 Undisturbed and saturated condition Oosterbaan (1994) 

Texture (Clay, Silt and Sand) % hydrometer method Soil Survey Staff (1996) 

OM % wet oxidation method (Walkley-Black) with 
potassium dichromate (K2Cr2O7) Nelson and Sommers 1982 

pH 1:2.5  (w:v) soil-water suspension Soil Survey Staff (1996) 
EC dS m-1 (w:v) soil-water suspension Soil Survey Staff (1996) 
CaCO3 % Scheibler calsimeter Soil Survey Staff (1993) 

Nutrient availability indicators 
NaHCO3–P mg kg-1 the molybdophosphoricblue method Kacar B (2016) 

Total N  % Kjeldahl Bremner and Mulvaney 
(1982) 

NH4OAC–K,  mg kg-1 Ammonium acetate extraction, flame spectrometry 
detection 

Soil Survey Staff (1992) 

DTPA–Zn mg kg-1 DTPA extraction, AAS detection Kacar B (2016) 

2.3. Land quality index and rating assignment 
The rice plant likes soil that is deep, clayish, and rich in plant nutrients and organic matter, as well as 

being medium resistant to salt (Özkan et al., 2019).  
Land quality indicators were used in the study area (Table 2). The identification of the rice land quality 

index consists of the nutrient availability index and soil quality index. The formula used to identify the nutrient 
availability index (Dengiz, 2013) is given below.  

 
NAI(Nutrient Availability Index = N(%)× P(mg kg–1) × K (mg kg–1)× Zn(mg kg–1)                (1) 
 
It is used to identify soil quality index (SQI) (Gupta and Abrol, 1993) is shown below. 
 
SQI = Cy x Si x Sa x D x F x P x G x S x K x H                         (2) 

 
Where; Cy is clay, Si is silt, Sa is sand, D is soil depth, F is slope, P is bulk density, G is hydraulic 

conductivity, S is exchangeable sodium percentage (ESP), K is (CaCO3) content, and H is pH. 

Table 2. Rating factors for indications of land quality for paddy cultivation 
Land quality indicator Factor rating 
 Diagnostic Factor Unit 1.0 0.8 0.5 0.2 
 NAI= N x P x K x Zn 
I. Nutrient Availability 
Index (NAI) 

TN 
P 
K 
Zn 

% 
mg kg-1 
mg kg-1 
mg kg-1 

>0.2 
>25 
>60 
>0.7 

0.1-0.2 
10-25 
30-60 

0.7-0.5 

<0.1 
<10 
<30 
<0.5 

- 
- 
- 
- 

II. Soil Quality Index (SQI) SQI = Cy x Si x Sa x D x F x P x G x S x K x H 
 
Texture 

Clay-Cy % > 50 40-50 25-40 <25 
Silt-Si % <25 25-40 40-50 >50 

Sand-Sa % <30 30-45 45-50 >50 
Depth (D)  cm > 50 25-50 15-25 < 15 

Topography (F) Land form or Slope % Flood plain or 
0-2% 

Low terrace 
or 2-4% 

Middle terrace 
or 

4-6% 

 
High terrace/ 
mountain or 

>6% 
 

Bulk Density  (P) BD gr cm-1 <1,40 1,40-1,45 1,45-1,60 >1,60 
Hydraulic 
conductivity (G) HC cm h-1 < 0.5 0.5-2.0 2.0-6.25 > 6.25 
 Electric Conductivity (S) or 
ESP EC dS/m 

(%) 
0-3.1 

10 
3.2-4 
10-20 

4.1-5 
> 20 

> 5.1 
> 20 

Organic matter (O)  % >3 3-1,5 1,5-0,5 <0,5 
Lime (K) CaCO3 % 0-5 5-15 15-20 > 20 
Soil reaction (H) pH - 5.5-7.3 7.4-7.8 

5.1-5.5 
7.9-8.4 
4.0-5.0 

>8.4 
< 4.0 
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Each indicator was scored with a ratio value between 0.2 and 1.0. The results of the analysis on 
the indicator take a value of 1.0 if it has the most suitable condition for rice cultivation, and 0.2 if it has 
the most unfavorable condition. The indicator takes a value between 0.2 and 1.0 according to the severity 
of limiting rice growth. The spatial information of both descriptive indicators on the NAI and descriptive 
indicators on the SQI were obtained from land mapping units and surface soil samples. In order to 
identify the land quality index value for rice, the following formula was used (Dengiz, 2013; Sezer and 
Dengiz, 2014). 

 
LQIR (land quality index) = NAI × SQI                                                 (3) 
 
The above-mentioned formula was applied to each soil sample. As a result, the higher the point 

value is, the higher the suitability of land is for the specified Land Utilization Type. Rice land quality 
classification according to Dengiz (2013) is given in Table 3. 

Table 3. Land quality index value for rice cultivation 
Definition Suitability Class Land Quality Index Value 
Highly Suitable S1 1.00-0.250 
Moderate Suitable S2 0.250-0.100 
Marginally Suitable S3 0.100-0.025 
Unsuitable N < 0.025 

 
For the purpose of model verification, for each quality class in the study area,  random blocks 

field trial pattern using 12 paddy varieties (Sumnu, Osmancik-97, Gonen, Beser, Duragan, Halilbey, 
7721, Karadeniz, Kizilirmak, Koral, Negis, and Aromatik)  was carried out for two years. In the 
experiment where the strewing planting method was applied, parcel yields were obtained by removing 
the edge effect so that the plot size was 4 x 4 = 16 m² and the harvest area was 3 x 4 = 12 m² (Sezer et 
al., 2017). ANOVA and LSD0.05 were performed for the grain yields. In addition to that, in order to 
gain values of basic descriptive statistics parameters, IBM SPSS Statistics 23v. program was used (IBM, 
2015). 

2.4. Deep learning and algorithms 

Classification and estimation are skills that a person has learned and used multiple times 
throughout their life. Previously used neural networks only had one or two hidden layers; however, deep 
models may have a hundred layers (Goodfellow et al, 2016). These layers are used to classify pre-tagged 
input data or to perform numerical prediction (Kamilaris, 2018). Multiple linking between layers 
generates a large number of parameters. These parameters are usually initialized with random values. 

2.5. Architecture of deep learning and tools 

Despite the differences in deep learning architectures with their unique features, they all share 
the same aimwhich is to reduce the complexity of the model and increase its accuracy. (Esgario, 2020). 
Our model in the present study is trained on Google Colaboratory (2020), a free Jupyter notebook 
environment operating on the cloud. Keras (2020) backend (Python Deep Learning library) is used as a 
deep learning package with Tensorflow. Python 3 programming language was used to implement the 
deep model. In addition to many libraries required to implement deep learning algorithms, Numpy, 
Pandas, and MatPlotlib libraries were used. Feedforward Neural Networks (FNN), a basic deep learning 
method was used (Goodfellow et. al, 2016). In prepared feedforward neural network (FNN) layers, the 
Sequential model, which provided a flat layer stack, the most common model type in which each layer 
had one input tensor and one output tensor, was used (Chollet 2020).  
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Table 4. Deep learning regression (RM1, RM2, RM3) and classification models (CM1, CM2) 
Models Input Layer Hidden Layer           Output Layer Trainable parameters 

RM1 Dense: 15 

Dense: 30 

Dense: 1 1.921 Dropout: 20% 
Dense: 45 
Dropout: 20% 

RM2 Dense: 15 

Dense: 64 

Dense: 1 9.473 Dropout: 20% 
Dense: 128 
Dropout: 40% 

RM3 Dense: 15 

Dense: 64 

Dense: 1 13.633 

Dropout: 20% 
Dense: 64 
Dropout: 20% 
Dense: 128 
Dropout: 20% 

CM1 Dense: 15 Dense: 64 Dense: 4 5.444 Dropout: 20% 

CM2 Dense: 15 

Dense: 32 

Dense: 4 7.044 

Dropout: 20% 
Dense: 64 
Dropout: 30% 
Dense: 64 
Dropout: %40  

 
Fifteen different physicochemical properties (pH, EC, lime, OM, depth, slope, HC, BD, clay, 

silt, sand, N, P, K, and Zn) of soil types investigated in the study were chosen as input layer parameters 
in the deep learning system. The ReLU (Rectified Linear Unit) activation function, which is a widely 
used system in identifying the activation status of neurons in models as well as offering a computational 
advantage, was used in the study. RMSprop, based on gradient descent, was used as the optimization 
method. The learning rate was chosen as 0.001. In order to eliminate the uncertainty caused by network 
randomness, fixed seed data were input at the beginning of the program. 

2.6. Training, Test, and Validation 

In the present study, the dataset was divided into education (80%) and test (20%) sets. In 
addition, 20% of the training set was chosen as validation data. In deep neural networks, the learning is 
based on a gradient descent algorithm and back propagation approach. The cross entropy cost function 
was used for classification evaluation. After the cost function was calculated, the derivative of this 
function was assessed on weights. While performing regression, MSE (Mean squared error) loss 
function was used.  

2.7. Performance metrics 

During network training, the cases where the models provided the minimum cost function value 
for the validation set (weight set) were recorded. Then, these recorded models were assessed using the 
test dataset. In the classification study, the results were compared in terms of Confusion Matrix and 
Accuracy (ACC). In the regression study, results were assessed in terms of RMSE and R2. To evaluate 
the proposed deep learning algorithms, the accuracy metric was used as shown in equation 4:  

 
Accuracy =(TP + TN)/(TP + TN + FP + FN)                         (4) 
 
Where TP, TN, FP, and FN are truly positive, true negative, false positive, and false negative, 

respectively (Aggarwal and Agrawal, 2012). 

2.8. Interpolation Analyses 

Interpolation techniques are used in expressing and mapping the changeability of values on 
investigated properties depending on the distance (Goovaerts, 1999; Mulla and McBratney, 2000).  

IDW is the most commonly used interpolation models in identifying the spatial distribution of 
rice land quality index  (LQIR) value for each point defined within the study area. The  RBF (spline) 
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deterministic and stochastic models (also known as Kriging) models such as ordinary, universal, and 
simple Kriging models were also used.  A total of 15 models used for forming a spatial distribution map 
of LQIR on the interpolation were (Inverse Distance Weighting-IDW; 1, 2, 3, Radial Basis Function-
RBF; Thin Plate Spline-TPS; Completely Regularized Spline (CRS); Spline With Tension (ST), and 
Ordinary, Simple, and Universal Kriging models. The method that provided the lowest square-root-
mean-error-value was assessed as the most suitable method. The following formula was used to calculate 
the square-root-mean-error. 

 

𝑹𝑴𝑺𝑬 = &∑(𝒛𝒊∗$𝒛𝒊)²
𝒏

                                                  (5) 
Zi: refers to the estimated value,  measured value, and the number of samples. 

3. Results and Discussion 

3.1. Soil physico-chemical characteristics 

The descriptive statistics of some physico-chemical properties of soil samples are shown in 
Table 5. Wilding et al (1994) and Mulla and McBratney (2000) classified the variability as low if the 
CV is less than 15%, moderate if the CV is between 15% and 35%, and high if the CV  is greater than 
35%. In this sense, variables of pH had low CV. On the other hand, the variables of HC, sand, EC and 
AvP, AvK, AvZn, and OM content showed a high level of variability. In this study, clay, silt, sand, BD, 
HC, pH, EC, and CaCO3 showed normal data distribution. 

Table 5. Descriptive statistics of some physicochemical properties of soil samples 
Indicators Mean SD (%) CV Variance Min. Max. Skewness Kurtosis 
Clay (%) 53.3

4 1..21 25.23 181.04 23 67 -0.11 -0.84 

Silt (%) 27.1
5 0.53 21.82 35.08 21 43 1.71 1.41 

Sand (%) 19.5
2 1.26 71.94 197.13 6 55 1.09 1.32 

BD (gr cm-1) 1.35 0.02 15.42 0.04 0.88 1.88 0.63 -0.31 
HC (cm h-1) 1.28 0.17 144.6 3.43 0.11 5.93 1.47 1.69 
pH 7.76 0.04 5.37 0.42 7.14 8.82 1.79 1.33 
EC (dS/m) 6.62 0.46 78.02 26.65 1.14 17.15 -0.83 0.74 
CaCO3 (%) 9.73 0.27 30.47 8.79 3.04 15.97 1.02 -0.19 
OM (%) 2.57 0.16 69.34 3.18 0.81 8.08 5.56 2.60 
TN (%) 0.13 0.004 31.07 0.002 0.054 0.337 8.86 2.15 
P (mg kg-1) 18.8

8 0.69 40.98 59.88 6.67 52.22 2.38 1.19 

K (mg kg-1) 38.1
9 2.306 67.25 659.81 11.9 257.15 44.77 5.80 

Zn (mg kg-1) 2.36 0.26 122.7 8.42 0.31 19.65 13.45 3.29 

3.2. Regression with deep learning (dnn) on randomly selected data, independent of soil classes 

Parameters on the dataset are clearly grouped into different soil classes. During deep learning, 
training, and testing dataset were randomly selected without considering class information. the 
regression estimation of the "index" parameter using DNN is conducted (Figure 3). The  R2 value of 
86.07% was achieved for RM2 after 1,500 epochs on the test dataset.  The R2 values on the test 
conducted for other network models: RM1 77.77%, and RM3 85.61% The number of network 
parameters in Model 1 was insufficient, the number of network parameters in RM2 was at the optimum 
level, and the large number of network parameters in RM3 caused overfitting. Therefore, higher 
estimation was achieved with the network trained using RM2. The error rate decreased as the number 
of epochs increased. There was not much change after approximately 250 epochs. 

 



YYU J AGR SCI 33 (1): 75-90 
Şenyer et al. / Land Quality Index for Paddy (Oryza sativa L.) Cultivation Area Based on Deep Learning Approach using Geographical Information System and 

Geostatistical Techniques 

83 

 
Figure 3. R2 and error (MAE and RMSE) graphics obtained from RM2 network used for training and 

test data on the “index” parameter. 

 According to results obtained in regression estimation using DNN on the "yield" parameter in 
Figure 4, an R2 value of 86.61% was obtained on the dataset after 1,000 epochs for RM3. The R2 values 
for other network models on the testRM1 81.88%, and RM2 79.61%. A high accuracy rate in estimation 
is obtained as the number of parameters increases in the network. Therefore, RM3 showed the highest 
R2 value. The error rate decreased as the number of epochs increased. After approximately 50 epochs, 
the training error continues to decrease; however, the validation error decreased in a slower trend.  

 
Figure 4. R2 and error (MAE and RMSE) graphics obtained from RM3 network used for training and 

test data on the "yield" parameter. 
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According to results obtained in regression estimation using DNN on the "NAI" parameter in 
Figure 5, an R2 value of 84.53% was obtained on the dataset after 1000 epochs for RM2. The R2 values 
for other network models on the test were obtained as RM1 81.74%, and RM3 81.07%. The number of 
parameters in RM2 provided the best estimation success rate for NAI. It also provided a high accuracy 
rate in the NAI estimation in the other two models. The error rate decreased as the number of epochs 
increased. There was not much change after approximately 200 epochs. 

 
Figure 5. R2 and error (MAE and RMSE) graphics obtained from RM1 network used for training and 

test data on the "NAI" parameter. 

 
Figure 6. R2 and error (MAE and RMSE) graphics obtained from RM3 network used for training and 

test data on "SQI" parameter. 
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According to results obtained in regression estimation using DNN on the "SQI" parameter in 
Figure 6, an R2 value of 87.80% was obtained on the dataset after 1500 epochs for RM3. The R2 values 
for other network models on the test were shown to be 83.83% for both RM1 and RM2. Therefore, RM3 
indicated the highest R2 value. The error rate decreased as the number of epochs increased. There was 
not much change after approximately 200 epochs. 

The study found that using the index, efficiency, NAI, and SQI soil characteristics as network 
outputs led to varying levels of model performance. As a result, various models were recommended for 
each network output. All of the R2 values that were obtained for estimating the index, yield, NAI, and 
SQI parameters were within acceptable bounds. 

3.3. Regression using deep learning (DNN) on randomly selected data, dependent on soil classes 

During deep learning, the training and test dataset were randomly selected depending on the soil 
class information. The results obtained in this way are given in Table 6. 

Table 6. R2 results of deep learning on randomly selected data dependent/independent of soil classes 
 train test model 
 (%) 

Independent 
(%)  
Dependent 

(%) 
Independent 

(%)  
Dependent 

 
Independent 

 
Dependent 

Index 88.70 91.49 86.07 91.14 RM2 RM2 
Productivity 87.23 88.29 86.61 87.50 RM3 RM3 
NAI 89.02 89.00 81.74 87.54 RM2 RM1 
SQI 89.50 91.09 87.80 87.54 RM3 RM2 
Mean 88.61 89.97 85.56 88.43   

In this sense, selecting samples, considering class information, yields healthier results. 

3.4. Soil classification using deep learning 

 
Figure 7. Graphic of Accuracy and Confusion matrix for training and test data for CM1. 

In Figure 7, the results obtained from 1,000 epochs are given when CM1 is used to classify the 
"class" information. A performance rate of 96.97% for training and 80.00% for testing was achieved. 
The classifying properties generated an error in Class 0. Around 56% of Class 0 samples are classified 
as Class 3 errors. 
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Figure. 8. Graphic of Accuracy and Confusion matrix for training and test data for CM2. 

In Figure 8, the results obtained from 1,000 epochs are given when CM2 is used to classify the 
"class" information. A performance rate of 95.96% for training and 88.00% for testing was achieved. 
The classifying properties generated an error in Class 0. Around 33% of Class 0 samples are classified 
as Class 3 errors. The accuracy rate obtained on the test dataset was higher in CM2. Therefore, CM2 
should be used in soil classification studies. 

3.5. Land quality assessment and model verification 

In order to form a distribution map of LQIR values for each point identified by the deep learning system, 
a total of 15 semi-variogram models were applied and the model comparison obtained for RMSE values 
is given in Table 7. In Table 7, the lowest RMSE value was found to be 0.1095 and the Completely 
Regularized Spline model, belonging to the Radial Basis Function, was identified. Moreover, in Table 
3, a distribution map of the LQIR map, consisting of 4 classes, was created. (Figure 9). 

Table 7. Cross validation according to different interpolation models 
 

Criteria 
Inverse Distance Weighing IDW Radial Basis Function 

RBF 
1 2 3 TPS CRS ST 

LQIR 0.1171 0.1120 0.1098 0,1169 0.1095 0.1096 

 
 
Criteria 

Kriging 
Ordinary Simple Universal 

Gau. Exp. Sph. Gau. Exp. Sph. Gau. Exp. Sph. 

LQIR 0.1109 0.1101 0.1101 0.1123 0.1114 0.1109 0.1109 0.1102 0.1101 

TPS: Thin Plate Spline, CRS: Completely Regularized Spline, ST: Spline with Tension; Gau.: Gaussian, Exp.: Exponential, Sph.: Spherical. 

According to results obtained in the study, it was found that 64.9% of the total land was 
distributed between suitable (S1) and medium-suitable (S2) classes for rice cultivation while 26.5% was 
in the marginal class (S3). In addition, a very small part of this land (8.6%) was found to be unsuitable 
for paddy cultivation. The lands that were found to be unsuitable for rice cultivation were the At.1 
mapping unit, belonging to the Adatepe soil series that are classified as Vertic Calcixerept, with shallow 
soil depth and high slopes, Boztepe (Bz.1) classified as Vertic Haploxerept, and Bz.2 soil series. The 
marginal suitability class in terms of land quality is on Dağmatoğlu, Çengeldüzü, Yücekyazısı, and 
Kumbaba soil series which are respectively classified as Aquic Haploxerept, Vertic Xerefluvent, and 
Typic Haploxeret including mapping units Dc.2, Dc.3, Cd.1, Yc.3 and Kb.1 mapping units which were 
respectively classified as Aquic Haploxerept, Vertic Xerefluvent, and Typic Haploxeret on Dağmatoğlu, 
Çengeldüzü, Yücekyazısı, and Kumbaba soil series. The most important limiting feature of these soils 
is their salinity and coarse texture. 
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Figure 9. Spatial distribution map of the LQIR. 

Table 8. Grain yields (kg ha–1) of paddy varieties cultivated in the Çorum-Osmancık (LSD0.05 = 2.07) 
Suitability Classes Variety Max. Min. SD Mean* 

S1 

Osmancık-97 8100 8053 17 8078 a 
Neğiş 6135 6015 50 6060 e 

Aromatik 7740 7536 77 7652 b 
Beşer 8365 8002 133 8166 a 
7721 7400 7190 88 7269 c 

Halilbey 7897 7500 165 7748 b 
Gönen 6695 6490 91 6558 d 

Karadeniz 6800 6695 43 6759 d 
Kızılırmak 7840 7368 208 7679 b 

Koral 6310 6140 70 6245 e 
Durağan 7185 6922 100 7036 c 

Şumnu 7383 6940 177 7116 c 

S2 

Osmancık-97 6150 6045 42 6087 b 
Neğiş 4345 3830 173                4085 h 

Aromatik 2780 2280 210 2595 ı 
Beşer 6260 6230 11 6247 ab 
7721 5730 5605 53 5650 c 

Halilbey 6560 6525 53 6480 a 
Gönen 4800 4550 108 4712 g 

Karadeniz 5485 5140 128 5332 d 
Kızılırmak 4135 3825 110                3990 h 

Koral 4955 4870 36               4923 fg 
Durağan 5405 5030 134              5232 de 

Şumnu 5130 4950 72               5058 ef 

S3 

Osmancık-97 4475 4240 100 4390 b 
Neğiş 2505 2305 78 2423 g 

Aromatik 1805 1645 68 1703 h 
Beşer 4357 3830 185 4079 cd 
7721 4318 4063 87 4187 bcd 

Halilbey 5930 5463 179 5662 a 
Gönen 3830 3275 212 3513 f 

Karadeniz 4515 4155 149 4291 bc 
Kızılırmak 1657 1244 174 1505 ı 

Koral 4063 3873 73 3954 de 
Durağan 4075 3650 166 3827 e 

Şumnu 3375 3302 25 3339 f 

*Means followed by the same subscripted letters are not significantly different. 
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In order to test the model verification, a field trial study was conducted for two years in classes 
belonging to different rice land quality indices identified within the study area. The yield values of all 
rice cultivars were affected by their location. The average yield values for S1-class, S2-class, and S3-
class were found to be 7,197, 5,032, and 3,572 kg ha–1 respectively. The difference between S1 and S3 
was found to be 3,624 kg ha–1. The highest yield was in S1 in the class Beser and Osmancik-97 varieties 
with 8,166 and 8,078 kg ha–1 respectively while the lowest yield was obtained in the S3 suitability class 
in Kızılırmak variety with 1,505 kg ha–1 (Table 7). According to statistical analysis, the grain yields 
were significantly affected by LSC and it also affected varieties differently (ANOVA, P < 0.001). 

The results of the LSD test are shown in Table 8. For the S1 class, the ranking of paddy varieties 
for decreasing grain yield was Beser > Osmancik > Halilbey > Kizilirmak > Aromatik > 7721 > Sumnu 
> Duragan > Karadeniz > Gonen  > Koral > Negis. As for the S2 class, Kizilirmak was also observed to 
have the lowest grain yield for the S3 class. According to grain yield, Beser, Osmancik-97, and Halilbey 
were the 3 best varieties. The worst varieties are Aromatik, Kizilirmak, and Negis. According to the 
results, the most suitable class was determined as S1 for growing high grain yield, followed by S2 and 
S3 classes. 

Conclusion 

Considering the land quality distribution for rice, most of the land (64.9%) was found to be 
suitable for rice cultivation while very few (8.6%) were found to have low land quality, and unsuitable 
for rice cultivation. The decrease in soil quality due to intensive rice cultivation threatens the 
sustainability of rice agriculture in the Çorum-Osmancık region. Land quality classes, which are an 
important factor in agricultural production, have been prioritized in this study, and different 
physicochemical soil properties have been chosen as input parameters in order to conduct a regression 
analysis and classification using deep learning. It was found that the selection of training and test 
samples in the dataset, considering class information, produced high-performance results in estimating 
soil parameters and identifying land quality classes for rice. In addition, field trials were conducted in 
order to identify the accuracy levels of defined land quality classes, and results showed that the data 
were statistically significant according to obtained test results. 
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