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 Hyperspectral images are widely used for land use/cover analysis in remote sensing due to 
their rich spectral information. However, these data often suffer from noise caused by various 
factors such as random and systematic errors, making them less useful for end-users. In this 
study, denoising methods (i.e., DnCNN, NGM, CSF, BM3D, and Wiener) for hyperspectral 
images were compared using the Pavia University hyperspectral dataset with four different 
noise types: Gaussian, Salt & Pepper, Poisson, and Speckle. After denoising, the k-nearest 
neighbor method was used to classify the image, and statistical and visual performance 
comparisons were performed on the classified data. Six performance metrics -Accuracy, 
Sensitivity, Specificity, Precision, F-Score, and G-Mean- were employed to compare the 
outcomes qualitatively. The findings demonstrate that DnCNN and BM3D have the best 
outcome performance for all four noise types. Due to their lack of sensitivity and specificity, 
the CSF and Wiener approaches had low performance for particular noise sources. For all 
noise types, the NGM approach had the worst results. The validated instruments not provide 
effective results when it came to denoising Salt & Pepper noise, but they managed to produce 
outstanding results when it came to denoising Poisson noise. In order to enhance the quality 
and usability of hyperspectral images for land use/cover analysis, this study emphasizes the 
significance of choosing an effective denoising technique. 
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1. Introduction  
 

Hyperspectral images (HSI) are significant data that 
can be successfully employed in many different 
industries, such as agriculture, astronomy, and the 
military, including remote sensing and photogrammetry, 
because they contain significantly more spectral 
information than three-band red, green, and blue (RGB) 
images. The number of photons captured per band is 
much lesser in HSIs than in RGB images, allowing 
different noises to be easily incorporated into the 
corresponding bands during the acquisition process. 
This is because HSIs capture the spectral information of 
each spatial location in a scene with large wavebands [1-
3]. These noises cause image distortions, which have a 
detrimental effect on the performance of all HSI 
applications as well as how the HSI is visually presented. 
An important stage in the analysis and processing of HSI 
is denoising. The multi-detector imaging method of HSI 

sensors, however, results in complex noises like random 
noise and structural stripe noise. Through advanced 
analysis, this complex noise condition dramatically 
affects the ability to extract and comprehend 
information. Unwanted signals and marks on the image 
are collectively referred to as noise from images, and 
they frequently contaminate images and provide a hazy 
impression. Depending on how they impact the image, 
the noises have different distributions. The noise must be 
identified based on its pattern and probabilistic 
properties. Image and signal data include a wide variety 
of noise [4-6]. Gaussian, Salt & Pepper, Poisson, impulse, 
and Speckle noise are the most common types of noise 
that distort images. Effective image denoising is essential 
in the majority of image processing applications since the 
performance of subsequent image processing operations 
completely depends on how well the noise reduction 
process performs. However, this is a challenging task 
because the denoising operator must effectively remove 
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noise while preserving crucial information in the image. 
The majority of contemporary filtering algorithms 
employ sequential statistical filters that make use of the 
rank information of a sufficient collection of noisy input 
pixels [7]. Non-local means algorithm (NLM) [8], block 
matching and 3D filtering algorithm (BM3D) [9], residual 
learning of deep CNN for image denoising (DnCNN) [3], 
K-SVD algorithm [10], Markov random field models 
(MRF) [11], Non-Local Meets Global (NGM) [12], 
weighted nuclear norm minimization (WNNM) [13], 
Wiener [14], and a cascade of shrinkage field (CSF) [15] 
are some of the HSI noise removal approaches that have 
been presented in recent years. 

Due to all of these factors, it is crucial to identify the 
denoising filter that is appropriate for each type of noise, 
making this study crucial. This study used the k-nearest 
neighbor approach to classify Gaussian, Salt & Pepper, 
Poisson, and Speckled HSI images after applying the 
DnCNN, NGM, CSF, BM3D, and Wiener filters. The 
effectiveness of the filtering techniques was compared. 

The remainder of this work is structured as follows: 
Section 2 defines the material and method, Section 3 
presents the results and discussion, and Section 4 
includes the conclusion. 

 

2. Material 
 

In this study, various types of noise were added to the 
HSI and then the classification performance of the HSI 

was investigated by applying some noise removal 
methods. In this context, the flow chart of the study 
performed in Figure 1 is presented. 
 

 
Figure 1. Flow chart of study 

 
Pavia is a dataset acquired using the ROSIS sensor 

with a ground sampling distance of 1,3 m over the Italian 
city of Pavia. The dataset is divided into two parts: 
University of Pavia consist of 103 bands with 610x340 
pixels and Pavia Center consist of 102 bands with 
1096x715 pixels [16]. In Figure 2, RGB, ground truth and 
data cube representations of the Pavia University dataset 
are given. 

 

 
Figure 2. A representation of the RGB, ground truth, and hyperspectral data cube of Pavia HIS 

 
 

There are various urban elements in Pavia (such 
metals, bricks, and asphalt etc.). Nine different areas of 
interest were recognized, making up 50% of the surface. 
Due to its dimension and ability to assess the usage of HSI 
for possible applications, this dataset has long been 
regarded as one of the primary references. Preprocessing 
may be essential to eliminate some pixels that lack 
spectral information. The class distribution of the Pavia 
University data set used in this study is presented in 
Table 1.  

The implementation was carried out using MATLAB 
2022a software on a laptop with AMD Ryzen 9 5900HX 

Radeon 3.30 GHz processor, 32 Gb RAM and AMD Radeon 
RX 6700M graphics card. 

 

Table 1. Pavia dataset specifications 
# Class Name Ground Sample 
1 Asphalt 6631 
2 Meadow 18649 
3 Gravel 2099 
4 Trees 3064 
5 Painted Metal Sheet 1345 
6 Bare Soil 5029 
7 Bitumen 1330 
8 Self-Blocking Brick 3682 
9 Shadow 947 
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3. Methods 
 

In this section, noise types, denoising methods and 
classification method (i.e., k-nearest neighbor), which 
form the basis of the proposed method, are explained. 
 

3.1. Noise types 
 

Noise is commonly defined in digital images as a 
random change in brightness or color information, and it 
is frequently generated randomly or systematically by 
the technological constraints of the image acquisition 

sensor and improper ambient conditions. Furthermore, 
noise may penetrate the image in a variety of ways during 
image collecting and transmission. Noise in an image can 
be either additive or multiplicative. An additional noise 
signal is added to the original image in the additive noise 
model to produce a distorted noise image/signal. The 
original image is multiplied by noise in the multiplicative 
noise model, but in the additive noise model, the noise is 
added to the original image to create a distorted noisy 
image or signal [17-19]. In general, this process can be 
described as Equation 1. 
 

( ) ( ) ( ) ( ) ( ) ( ),    ,   , ,    ,   ,or yf x y a x y b x y f x y a x y b x= + = 
 (1) 

 
 

(𝑥, 𝑦) represents the pixel position, 𝑎(𝑥, 𝑦) represents 
the original image, the noise inside the distorted/noise, 
𝑏(𝑥, 𝑦), added image is represented by 𝑓(𝑥, 𝑦). 

Gaussian noises, in which the statistical behavior of 
random variables is characterized by a probability 
density function, are typically induced by insufficient 
illumination conditions, atom thermal vibration, and the 
discontinuous nature of warm object radiation. Gaussian 
noise is distributed uniformly throughout the signal. A 
noisy image is a set of pixels formed by adding the 
original pixel values to a random Gaussian noise value. A 
Gaussian's probability distribution function has the 
shape of a bell. The most typical application for Gaussian 
noise is white Gaussian noise. The magnitude of the 
Gaussian Noise rises proportionally to the standard 
deviation (𝜎). Salt & pepper noise, also known as impulse 
noise, appears as black and white dots in the digital 
image. This model, also referred to as data drop noise, 
statistically reduces the original data values. Only a few 
pixels are extremely noisy and are thus generated by dust 
particles from overheated components in the image 
acquisition source. This noise occurs in the image as a 
result of sharp and rapid oscillations in the image signal, 
and only those few pixels are extremely noisy. Poisson 
noise appears due to the stochastic nature of 
electromagnetic waves, including visible light, gamma 
rays, and x-rays. The non-linear response of image 
sensors and recorders generates Poisson noise. The 
image-related term is considered to have its standard 
deviation because the mean and variance of a Poisson 
distribution are the same, assuming the variance of the 
noise is one. Speckle noise, unlike other types of noise, is 
multiplicative noise. It degrades image quality by 
simulating a backscattered wave created by diffuse 
reflection. This form of noise is commonly found in 
synthetic aperture radar images used in remote sensing 
investigations, making it difficult for practitioners to 
detect minute features [20-23]. 

 
3.2. Denoising methods 
 

The problem of noisy data, which is often unavoidable 
in real-world applications, has become a widespread 
issue that must be addressed with appropriate denoising 
techniques [24]. Denoising an image is a complex 
procedure since noise is dependent on the image's high-
frequency content. In general, the objective is to achieve 

a compromise between suppressing noise as much as 
feasible while losing as little information as possible. 
Image noise can be removed using filter-based methods 
such as mean, median, wavelet, or Wiener. Modern 
approaches, however, have begun to be employed more 
frequently as computer technology has gained access to 
high hardware capabilities. Modern approaches such as 
Deep CNN Residual Learning (DnCNN), Non-local Meets 
Global (NGM), a cascade of shrinkage fields (CSF), block-
matching and 3-D filtering (BM3D), and Wiener methods 
were used in this study to denoising. 

Deep neural networks have made various attempts to 
address the denoising issue. CNN have recently 
demonstrated outstanding effectiveness in handling a 
variety of vision tasks, largely because to the ease of 
access to large-scale datasets and the advancements in 
deep learning techniques. DnCNN, a model that has been 
proposed to handle a variety of low-level tasks, not only 
resolves issues with image denoising, JPEG block 
removal, and super resolution, but it also carries out a 
blind reconstruction without knowing anything about 
the input image. The VGG network is used by DnCNN to 
construct the network architecture. 400 images are used 
to train a network and it is claimed that the residual 
image is easier to learn than the noisy image. The used 
DnCNN network has 59 layers. The residual learning 
formulation is used in the DnCNN model. In contrast to 
the residual network, which makes utilization numerous 
residual units, DnCNN only uses one residual unit to 
estimate the residual image. Additionally, DnCNN's 
incorporation of batch normalization and residual 
learning can lead to quick and consistent training as well 
as improved denoising performance [3]. The MATLAB 
code for DnCNN can be found at 
https://github.com/cszn/DnCNN. 

The NGM approach [25] was developed for HSI 
denoising. In order to combine spatial nonlocal similarity 
and global spectral low-order feature in NGM, the 
complex HSI denoising paradigm is implemented. From 
the noisy HSI, first the low-dimensional orthogonal base 
and its associated reduced image are learned, and then 
the reduced image and orthogonal base are updated by 
spatial nonlocal noise removal and recursion 
regularization, respectively. MATLAB code is available at 
https://github.com/quanmingyao/NGMeet. 

In the CSF method, shrinkage fields, an image 
restoration architecture derived from existing 
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optimization algorithms for common random field 
models, are introduced and combined the random field 
based model and the unfolded quasi-quadratic 
optimization algorithm in a single learning framework 
[15]. The MATLAB code for CSF can be found at 
https://github.com/uschmidt83/shrinkage-fields. 

BM3D proposed by Dabov et al., [26] proposes new 
image noise removal strategy based on improved sparse 
representation in the transform domain, and in BM3D, 
non-local similar patches are adaptively searched twice 
in a local widow of size 25x25, and thus the final effective 
patch size is 49x49. Increasing sparsity is accomplished 
by combining related 2D image segments into 3D data 
arrays known as groups. BM3D's MATLAB code may be 
found at https://webpages.tuni.fi/foi/GCF-BM3D/.  

There are several classic strategies, but the most basic 
approach, the Wiener filter, is a linear estimator that 
minimizes the mean square error between the original 
and noisy data. It is defined in various ways and utilized 
in diverse situations. When using a low-pass filter to blur 
an image, reverse filtering can be used to restore the 
image. The Wiener filter, developed by Norbert Wiener 
in 1940, reduces extra noise by conducting an efficient 
trade-off between reverse filtering and noise smoothing. 
However, because reverse filtering is particularly 

sensitive to extra noise, Wiener filtering reverses blur at 
the same time [24, 27]. 

 
3.3. k-nearest neighbor method 
 

One of the most widely used supervised classification 
methods is the k-nearest neighbor method. Cover and 
Hart's technique essentially uses k-nearest neighbor 
pixels for classification [28]. The query pixel is assigned 
to the class where the predominance is close after first 
determining the k-nearest neighborhood and measuring 
the query sample's distance from the training data using 
distance functions like Cosine, Euclidean, Manhattan, or 
Minkowski. The training process for the k-closest 
approach is carried out using training data. The approach 
makes selecting the best k value rather difficult [29]. 
 

4. Results and Discussion 
 

In this study, gaussian, Salt & Pepper, Poisson and 
Speckle noises were added to the Pavia University 
dataset. Then, DnCNN, NGM, CSF, BM3D and Wiener 
denoising methods were applied to the contaminated 
images and the results were compared statistically. RGB 
images with noise added are presented in Figure 3. 

 

 
Figure 3. RGB image of HSI with noise added a) Speckle, b) Salt & Pepper, c) Poisson and d) Gaussian 

 
 

While performing the noise addition, 𝜎2 = 0.01 for 
Gaussian noise, 𝑑 = 0.02 for Salt & Pepper noise, 𝜇 = 10 
for Poisson noise and 𝜎2 = 0.1 for Speckle noise. The 
RGB images of the HSIs in which the denoising process is 
applied after the noise addition are presented in Figure 
4. After denoising, the HSI was classified using the k-
nearest neighbor method. Before classification, the data 
set was randomly divided into 30% test and 70% 
training dataset. A Support Vector Machine could also be 
used for classification, but due to the dimensionality 
problem, these algorithms require a lot of workload 
equipment. In their study, Singh et al., [30] showed that 
the k-nearest neighbor method provides the most 
accurate result after support vector machines in HSI 
classification. Experimental application was carried out 
using the parameters used in [30]. In this context, cosine 
distance functions, 10 nearest neighbor number (k) and 
equal distance weight parameters are preferred. When 
looking at Figure 4, it is clear that the impacts of Gaussian 
noise on RGB cannot be totally avoided, particularly for 

BM3D and Wiener. Furthermore, the influence of salt & 
pepper noise cannot be seen removed for DnCNN and 
Wiener. The CSF approach resulted in texture softening, 
particularly in structures with sharp corners and areas of 
land type change. By changing the density difference of 
objects with varying reflectance values, the NGM 
approach has made it more visible.  

In terms of noise types, BM3D, an effective and 
powerful extension of the non-local averaging method, 
generated extremely consistent findings. BM3D is a two-
stage, non-local filtering approach in transform space in 
which related patches are stacked in 3D groups and then 
transformed into wavelet space using block mapping. 
The wavelet domain is then used for coefficient Wiener 
filtering. Because peak-signal-to-noise ratio (PSNR) does 
not always guarantee an improvement in the visual 
effect, Figure 5 shows an overlay of the denoised and 
classified with k-nearest neighbor of HSI on the RGB 
image. 

 

https://webpages.tuni.fi/foi/GCF-BM3D/
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Figure 4. Denoising results of HSI exposed to various sources of noise 

 
 

Many analyses were carried out using the ground 
truth data from the classified images. Figure 6 shows the 
PSNR results of denoising based on ground truth data. In 
statistical comparisons, the accuracy metric alone does 

not yield useful conclusions. The distribution of the data 
sets in Table 1 shows that the meadow areas have more 
samples than the shadow areas. The usage of various 
metrics in unbalanced data sets is required as a result.  
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Figure 5. Overlaid classification results on RGB image 

 
The performance of five distinct denoising filters (i.e., 

DnCNN, NGM, CSF, Wiener, and BM3D) was compared for 
four different types of noise (i.e., Speckle, Salt & Pepper, 
Poisson, and Gaussian) in the following Table 2. For each 
filter, the six-performance metrics -accuracy, sensitivity, 

specificity, precision, F-Score, and G-Mean- were 
calculated. With Salt & Pepper noise, the accuracy 
metrics obtained by Wiener and NGM are reasonably 
comparable, however the specificity and G-mean values 
demonstrate that the methods produce different results. 
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The fact that NGM produces the worst result especially 
for the Salt & Pepper method shows that the method is 
ineffective against this noise. NGM produces more 
effective sensitivity results for Poisson noise than other 

types of noise. In general, approaches other than the 
BM3D method could not produce very effective results 
with Salt & Pepper noise, while all methods could 
effectively produce results with Poisson noise.  

 
 

 
Figure 6. PSNR value based on the Pavia dataset 

 
 

Table 2. Statistical results calculated according to the Pavia dataset (*Bold marked indicated best result) 
 Accuracy Sensitivity Specificity Precision F-Score G-Mean 

Sp
ec

k
le

 DnCNN 93.20 96.68 78.70 94.84 95.75 87.88 
NGM 79.74 96.76 14.15 81.33 88.37 36.16 
CSF 85.20 93.78 50.05 88.34 90.98 69.70 

Wiener 85.45 90.94 55.14 90.79 90.86 76.33 
BM3D 89.35 98.39 62.06 89.27 93.61 73.35 

Sa
lt

 &
 P

ep
p

er
 

DnCNN 80.16 98.99 10.43 80.48 88.78 28.22 
NGM 79.25 96.85 10.62 80.86 88.14 32.23 
CSF 81.93 94.49 33.12 84.60 89.27 55.87 

Wiener 79.00 97.30 7.21 80.41 88.06 27.40 
BM3D 88.62 93.57 64.59 92.19 92.88 80.74 

P
o

is
so

n
 DnCNN 87.53 96.06 57.27 89.07 92.43 72.59 

NGM 79.94 96.31 16.85 81.73 88.42 39.49 
CSF 84.30 94.08 45.48 87.20 90.51 65.93 

Wiener 86.08 94.84 52.22 88.49 91.55 70.20 
BM3D 89.47 94.93 66.43 92.04 93.46 80.67 

G
au

ss
ia

n
 DnCNN 89.75 98.65 63.51 89.5 93.85 74.11 

NGM 80.83 96.07 22.93 82.65 88.86 45.42 
CSF 88.30 94.16 62.36 91.39 92.76 78.51 

Wiener 86.00 95.70 50.51 87.80 91.58 67.95 
BM3D 88.05 98.17 56.60 88.12 92.87 69.57 

 
 

It is an important result that DnCNN produces 
effective results in Speckle noise as well as Gaussian. By 
learning the residual noise rather than the denoised 
image directly, researchers suggested [3] to denoise 
natural images using additive Gaussian noise using 
DnCNN. Similar research has been used as the foundation 
for various image processing networks, including 
Speckle de-noising [31] and the detection of illness in 

tomato leaves [32]. However, the disadvantage of 
vanishing gradients, which can happen with very deep 
networks, is reduced via residual learning. In contrast to 
other methods, NGM performs well just in the sensitivity 
criterion and poorly in the other criteria. This suggests 
that NGM is not the ideal choice for various sorts of noise. 
While the CSF method shows lower performance in 
sensitivity and specificity criteria compared to other 
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methods, it shows high performance against other 
criteria. This indicates that CSF may give less accurate 
results than other methods. The Wiener technique 
performs moderately in all noise types; however, it 
performs poorly by the G-mean criterion when compared 
to other methods. This indicates that, in many situations, 
the Wiener technique tends to produce less reliable 
result than other methods. 
 

 

5. Conclusion  
 

Denoising in multidimensional images has recently 
grown in popularity as a study area with potentially 
significant applications. This paper discusses the issue of 
denoising in high-dimensional remote sensing images 
and evaluates the effectiveness of five distinct 
approaches. Four additional noises have been added in 
this situation, and HSI has been classified. Denoising 
performance can be defined by high benchmarks. 
Looking at the quantitative and qualitative results, the 
BM3D filter generally outperformed other filters. In 
particular, the BM3D filter for Salt & Pepper and Gaussian 
noise had the highest G-Mean, with a higher accuracy, 
sensitivity, specificity, precision, and F-Score than the 
other filters. Denoising techniques performed better 
against Poisson noise even though they were statistically 
ineffective against Salt & Pepper noise. The DnCNN filter 
performed better than other filters for Gaussian and Salt 
& Pepper noises, but failed for Poisson and Speckle 
noises. NGM and Wiener filters performed the worst for 
all noise types. The low specificity of the NGM filter and 
the low sensitivity of the Wiener filter are particularly 
notable. As a result, evaluating the performance of 
different denoising filters for different noise types aids in 
determining the optimum filter for a given application. In 
summary, this study highlights the importance of 
selecting an appropriate denoising method for 
hyperspectral images to improve their quality and 
usability for land use/cover analysis. The results suggest 
that DnCNN and BM3D are the most effective methods for 
denoising hyperspectral images, while the CSF, Wiener, 
and NGM approaches have limitations and may not be 
suitable for certain noise types. 

The main advantage of this research is the 
comparison of a diverse variety of HSI noise reduction 
techniques to identify the most successful approach. The 
performance of various approaches has been evaluated 
using a variety of situations and criteria. The 
disadvantage of working with HSI data is that processing 
the data is difficult because of the enormous amount of 
data dimensionality, the requirement for a big data set, 
and the requirement to select parameters for the 
classification technique and filters. For these reasons, 
methods will be tested on various data sets (such as 
Salinas A, Indian Pines, and Botswana, etc.) in future 
studies. The effectiveness of filtering methods according 
to different data dimensions will also be investigated. 
Because a thorough investigation is needed to determine 
how different feature reduction techniques (i.e., Principal 
component analysis, Linear discriminant analysis, and 
minimum redundancy maximum relevance etc.) affect 
the outcome. 
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