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Research Article

Abstract − This paper contains the equivalence between tvs-G cone metric and G-metric
using a scalarization function ζp, defined over a locally convex Hausdorff topological vector
space. This function ensures that most studies on the existence and uniqueness of fixed-
point theorems on G-metric space and tvs-G cone metric spaces are equivalent. We prove
the equivalence between the vector-valued version and scalar-valued version of the fixed-point
theorems of those spaces. Moreover, we present that if a real Banach space is considered
instead of a locally convex Hausdorff space, then the theorems of this article extend some
results of G-cone metric spaces and ensure the correspondence between any G-cone metric
space and the G-metric space.
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1. Introduction

In 1906, French mathematician Frechet introduced metric space by generalizing the concept of the
Euclidean distance function. Later, Hausdorff, in 1914, formalized the definition of metric space by a
set of axioms inherited from the basic properties of Euclidean distance. After that, several generalized
metric spaces, such as 2-metric [1], b-metric [2, 3], strong b-metric [4], D-metric [5], G-metric [6],
S-metric [7], cone-metric [8], parametric S-metric [9], generalized parametric metric [10], and fuzzy
metric [11] have been familiarized. Since 1922, when Banach proved the celebrated Banach fixed point
theorem in complete metric spaces, several researchers have tried to generalize it. Sometimes this gen-
eralization is by changing the contraction condition or reforming it to some generalized metric spaces.
Based on the types of self-mappings, such as contractive or expansive, single-valued or multivalued,
fixed point theories have been developed on those spaces.

In 2006, G-metric space, one of those generalized metric spaces, was brought to light by Mustafa
and Sims [6] to overcome elementary imperfection in the structure of D-metric spaces, defined by
Dhage [5]. Immediately after, Guang and Xian [8] introduced the idea of cone metric in 2007, where
they replaced the set of non-negative real numbers with an ordered real Banach space. Following
them, Beg et al. [12] extended the concept of G-metric and cone metric to G-cone metric space in
2010. Consequently, many study on fixed point theory have been done in G-cone metric spaces.
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This article aims to investigate the relation between the vector-valued and scalar-valued versions of
fixed point theorems of generalized cone-metric spaces and G-metric spaces. We show that there is a
relationship between G-metric and G-cone metric with the help of scalarization function ζp, defined
on a locally convex Hausdorff topological vector space.

This article is presented as follows: Section 2 consists of some definitions and results used in the main
result Section. Section 3 establishes the relation between G-metric and G-cone metric utilizing the
tvs-G cone metric space definition. The final section contains some fixed point results ensuring their
equivalence in general G-metric spaces and tvs-G cone metric spaces and discusses the need for further
research.

2. Preliminaries

This section contains some definitions and results related to the main results of this study.

Let E be a topological vector space (tvs in short), θ be zero vector, and P be a nonempty convex,
i.e., P + P ⊆ P and µP ⊆ P , for µ ≥ 0, and pointed, i.e., P ∩ (−P ) = {θ}, cone in E. For the cone
P ∈ E, ⪯ is a partial ordering with respect to P given by x ⪯ µ ⇔ µ − x ∈ P . x ≺ µ stands for x ⪯ µ

but x ̸= µ and x ≺≺ µ stands for µ − x ∈ int(P ) where int(P ) denotes the interior of P .

Throughout the article, Y is a real locally convex Hausdorff TVS and P is closed, proper, and convex
pointed cone with the non-empty interior, p ∈ int(P ), and ⪯ is a partial ordering with respect to P

defined as above.

Consider the nonlinear scalarization function ζp : Y → R is defined by

ζp(x) = inf{s ∈ R : x ∈ ps − P}, for all x ∈ Y

Lemma 2.1. [13–17] For each s ∈ R, p ∈ int(P ), and x, x1, x2 ∈ Y , the following conditions are
satisfied:

i. ζp(x) ≤ s ⇔ x ∈ ps − P

ii. ζp(x) > s ⇔ x /∈ ps − P

iii. ζp(x) ≥ s ⇔ x /∈ ps − int(P )

iv. ζp(x) < s ⇔ x ∈ ps − int(P )

v. ζp(.) is continuous and positively homogeneous function on Y

vi. x2 ⪯ x1 implies ζp(x2) ≤ ζp(x1)

vii. ζp(x1 + x2) ≤ ζp(x1) + ζp(x2).

Note 2.2. [14] Clearly ζp(θ) = 0. Moreover, the converse statement of vi. in Lemma 2.1 is not true
necessarily. For example, let E = R2, P = {(x, y) ∈ X : x, y ≥ 0}, and p = (1, 1). Then, P is a
closed, convex, proper, and pointed cone in Y with int(P ) ̸= ϕ. For r = 1, it can be observed that
x1 = (8, −15) /∈ rp − int(P ) and x2 = (0, 0) ∈ rp − int(P ). By applying iii. and iv. of Lemma 2.1, we
have ζp(x1) < 1 ≤ ζp(x2) while x1 /∈ x2 + P .

Definition 2.3. [6] Let ℑ be a nonempty set and G : ℑ × ℑ × ℑ → [0, ∞) be a mapping that satisfies
the following conditions:

(G1) G(x, ζ, z) = 0 if x = ζ = z

(G2) 0 < G(x, x, ζ) if x ̸= ζ
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(G3) G(x, x, ζ) ≤ G(x, ζ, z) if ζ ̸= z

(G4) G(x, ζ, z) = G(x, z, ζ) = G(ζ, x, z) = · · · (Symmetric in all three variables)

(G5) G(x, ζ, z) ≤ G(x, µ, µ) + G(µ, ζ, z)

for all x, ζ, z, µ ∈ ℑ. Then, (ℑ, G) is called a G-metric space.

Definition 2.4. [6] Let (ℑ, G1) and (ℑ, G2) be two G-metric spaces. A function F : (ℑ, G1) → (ℑ, G2)
is said to be

i. G-continuous at a point η ∈ X if, for given α > 0, there exists β > 0 such that, for all η, b, z ∈ ℑ,
G2(Fη, Fb, Fz) < α if G1(η, b, z) < β.

ii. G-sequentially continuous at a point η ∈ X if {ηn} is G-converges to η implies {F(ηn)} is G-
converges to F(η).

Theorem 2.5. [6] Let (ℑ, G1) and (ℑ, G2) be two G-metric spaces. A function F : (ℑ, G1) → (ℑ, G2)
is G-continuous at a point η ∈ ℑ if and only if (iff) F is G-sequentially continuous at η.

Definition 2.6. [8] Let ℑ be a nonempty set, E be a real Banach space, P be a cone in E, and ⪯ is
a partial ordering in E with respect to P . A mapping M : ℑ × ℑ → E is called a cone metric on ℑ if
it satisfies the following properties:

(M1) M(y, α) ≻ θ, for all y, α ∈ ℑ, and M(y, α) = θ iff y = α

(M2) M(y, α) = M(α, y), for all y, α ∈ ℑ

(M3) M(y, α) ⪯ M(y, η) + M(η, α), for all y, α, η ∈ ℑ

Moreover, the pair (ℑ, M) is called a cone metric space.

Definition 2.7. [12] Let ℑ be a nonempty set, E be a real Banach space, P be a cone in E, and
⪯ is a partial ordering in E with respect to P . A mapping G : ℑ × ℑ × ℑ → E satisfying, for all
x, ζ, z, µ ∈ ℑ,

i. G(x, ζ, z) = θ if x = ζ = z

ii. θ ≺ G(x, x, ζ) if x ̸= ζ

iii. G(x, x, ζ) ⪯ G(x, ζ, z) if ζ ̸= z

iv. G(x, ζ, z) = G(x, z, ζ) = G(ζ, x, z) = · · · (Symmetric in all three variables)

v. G(x, ζ, z) ⪯ G(x, µ, µ) + G(µ, ζ, z)

is called a G-cone metric and (ℑ, G) is called a G-cone metric space.

Definition 2.8. [18] Let ℑ be a nonempty set, Y be a real Hausdorff tvs, and ⪯ is a partial ordering
in Y with respect to a cone P . A vector-valued mapping T : ℑ × ℑ → ℑ is called a tvs-cone metric if
it satisfies

(T 1) T (x, η) ≻ θ, for all x, η ∈ ℑ, and T (x, η) = θ iff x = η

(T 2) T (x, η) = T (η, y), for all x, η ∈ ℑ

(T 3) T (x, η) ⪯ T (x, α) + T (α, η), for all x, η, α ∈ ℑ

Moreover, the pair (ℑ, T ) is called a tvs-cone metric space.

Definition 2.9. [19] Let ℑ be a nonempty set, Y be a tvs, ⪯ be a partial ordering in Y with respect
to cone P , and G : ℑ × ℑ × ℑ → Y be a mapping satisfying the following conditions:
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(G1) G(x, ζ, z) = θ if x = ζ = z

(G2) θ ≺ G(x, x, ζ) if x ̸= ζ, for all x, ζ ∈ ℑ

(G3) G(x, x, ζ) ⪯ G(x, ζ, z) if ζ ̸= z

(G4) G(x, ζ, z) = G(x, z, ζ) = G(ζ, x, z) = · · · (Symmetric in all three variables)

(G5) G(x, ζ, z) ⪯ G(x, µ, µ) + G(µ, ζ, z), for all x, ζ, z, µ ∈ ℑ

Then, G is called a tvs-G cone metric, and the pair (ℑ, G) is called a tvs-G-cone metric space.

Definition 2.10. [19] Let (ℑ, G) be a tvs-G-cone metric space and {xn} be a sequence in ℑ. Then,

i. {xn} is said to be tvs-G-cone convergent to x if, for all α ∈ Y with 0 ≺≺ α, there is a K ∈ N such
that G(xm, xn, x) ≺≺ α, for all m, n ≥ K and we write lim

n→∞
xn = x.

ii. {xn} is said to be a tvs-G-cone Cauchy if, for all α ∈ Y with 0 ≺≺ α, there is a K ∈ N such that
G(xm, xn, xk) ≺≺ c, for all m, n, k ≥ K.

iii. ℑ is called tvs-G-cone complete if every Cauchy sequence in ℑ converges to some element in ℑ.

3. Main Result

In the following, we consider Y as a real locally convex Hausdorff tvs, P as a closed, proper, and convex
pointed cone in Y with non-empty interior, p ∈ int(P ), and ⪯ as a partial ordering with respect to P

defined as above.

Definition 3.1. A tvs-G-cone metric space (ℑ, G) is said to be symmetric if, for all α, y ∈ ℑ,
G(α, y, y) = G(y, α, α).

Note 3.2. In particular, if we take E as a real Banach space, then the definition of tvs-G-cone metrics
is reduced to G cone metrics of Beg et al. [12]. Hence, for examples of symmetric and non-symmetric
tvs-G-cone metric spaces, please see Examples 2.4 and 2.5 of Beg et al. [12].

Definition 3.3. Let (ℑ, G1) and (ℑ, G2) be two tvs-G-cone metric spaces and F : (ℑ, G1) → (ℑ, G2)
be a function. Then, F is

i. tvs-G-cone continuous at a point ξ ∈ ℑ if, for any α ≻≻ θ, there exists β ≻≻ θ such that, for all
ξ, y, c ∈ ℑ, G2(Fξ, Fy, Fc) ≺≺ α if G1(ξ, y, c) ≺≺ β.

ii. tvs-G-cone sequentially continuous at a point ξ ∈ ℑ if {ξn} is tvs-G-cone converges to ξ implies
{F(ξn)} is tvs-G-cone converges to F(ξ).

In the following theorem, we show that there is a relationship between a tvs-G cone metric space and
a G-metric space.

Theorem 3.4. Let ℑ be a nonempty set and (ℑ, G) be a tvs-G cone metric space. Define a mapping
MG : ℑ × ℑ × ℑ → R≥0 by MG = ζp o G where p ∈ int(P ) in Y . Then, MG is a G-metric on ℑ.

Proof.
Let ℑ be a nonempty set and (ℑ, G) be a tvs-G cone metric space. Define a mapping MG : ℑ×ℑ×ℑ →
R≥0 by MG = ζp o G where p ∈ int(P ) in Y .

i. If x = µ = z, then G(x, µ, z) = θ. Therefore, MG(x, µ, z) = ζp(G(x, µ, z)) = 0, since ζp(θ) = 0.
Thus, (G1) holds.

ii. If α ̸= y, then G(α, α, y) ≻ θ. Thus,

MG(x, y, z) = (ζpoG)(x, x, y) = ζp(G(x, x, y)) ≥ ζp(θ) = 0
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Hence, (G2) holds for MG .

iii. Since G(α, α, y) ⪯ G(α, y, c), for α, y ̸= c ∈ ℑ, thus ζp(G(α, α, y)) ≤ ζp(G(α, y, c)) and hence
MG(α, α, y) ≤ MG(α, y, c), for α, y ̸= c ∈ ℑ. Therefore, MG satisfies the condition (G3).

iv. (G4) is valid for MG , since G is symmetric in all three variables implies MG is.

v. For all α, y, a, µ ∈ ℑ, we have G(α, y, a) ⪯ G(α, µ, µ) + G(µ, y, a) which implies

ζp(G(α, y, a)) ≤ ζp(G(α, µ, µ) + G(µ, y, a)) ≤ ζp(G(α, µ, µ)) + ζp(G(µ, y, a))

Therefore, MG(α, y, a) ≤ MG(α, µ, µ) + MG(µ, y, a), for all α, y, a, µ ∈ ℑ and thus (G5) is valid.

Hence, MG is a G-metric on ℑ and the pair (ℑ, MG) is a G-metric space.

Corollary 3.5. If G is a G-cone metric on ℑ in the sense of Beg et al. [12], then MG = ζp o G is a
G-metric on ℑ.

Proof.
In the above theorem, in particular, if we take Y as a real Banach space, then the result can be
concluded from the above.

Next theorem establishes the relation between the notions of convergence of sequences in tvs-G cone
metric spaces and G-metric spaces.

Theorem 3.6. Suppose that G is a tvs-G cone metric and MG is a G-metric on ℑ where MG is defined
in Theorem 3.4. Then,

i. A sequence {ηn} converges in (ℑ, G) iff {ηn} converges in (ℑ, MG).

ii. A sequence {ηn} is a Cauchy sequence in (ℑ, G) iff {ηn} is Cauchy in (ℑ, MG).

iii. (ℑ, G) is complete iff (ℑ, MG) is complete.

Proof.
i. (⇒): Assume that {ηn} converges to η in (ℑ, G). Let ϵ > 0 be arbitrary. For any p ≻≻ θ in Y ,
there exists N ∈ N such that for all m, n ≥ N ,

G(ηn, ηn, η) ≺≺ pϵ =⇒ G(ηn, ηn, η) ∈ pϵ − int(P )

=⇒ ζp(G(ηn, ηn, η)) < ϵ

=⇒ (ζpoG)(ηn, ηn, η)) < ϵ

That is, MG(ηn, ηn, η) < ϵ, for all m, n ≥ N , which implies {ηn} converges to η in (ℑ, MG).

(⇐): Assume that a sequence {ηn} converges to η in (ℑ, MG). Let c ≻≻ θ in Y be arbitrary. Take
p ∈ intP and ϵ > 0 be such that pϵ ≺≺ c. Since {ηn} converges to η in (ℑ, MG), thus there exists
N ∈ N such that, for all m, n ≥ N ,

MG(ηn, ηn, η) < ϵ =⇒ (ζpoG)(ηn, ηn, η) < ϵ

=⇒ ζp(G(ηn, ηn, η)) < ϵ

=⇒ G(ηn, ηn, η) ∈ pϵ − int(P )

which implies G(ηn, ηn, η) ≺≺ pϵ ≺≺ c, for all m, n ≥ N , and thus {ηn} converges to η in (ℑ, G).

Proof of ii can be derived in a similar way of i, and iii is immediate consequence of i and ii.

Theorem 3.7. Suppose G1 and G2 are two tvs-G-cone metrics on ℑ and MG1 , respectively, and MG2

is the induced G-metrics on ℑ, as defined in Theorem 3.4. Then, a function T : (ℑ, G1) → (ℑ, G2) is
tvs-G-cone continuous iff T : (ℑ, MG1) → (ℑ, MG2) is G-continuous.
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Proof.
(⇐): Assume that T is G-continuous. Let c ≻≻ θ in Y . Take p ∈ int(P ) and ϵ > 0 be such that
pϵ ≺≺ c. Then, for ϵ > 0, there exists a δ > 0 such that

MG2(T a, T b, T c) < ϵ if MG1(a, b, c) < δ (1)

For p ∈ int(P ) and δ > 0, there exists an e ≻≻ θ be such that pδ ≺≺ e. From Relation 1, it follows
that

(ζpoG2)(T a, T b, T c) < ϵ if (ζpoG1)(a, b, c) < δ =⇒ ζp(G2(T a, T b, T c)) < ϵ if ζp(G1(a, b, c)) < δ

=⇒ G2(T a, T b, T c) ∈ pϵ − int(P ) if G1(a, b, c) ∈ pδ − int(P )

=⇒ G2(T a, T b, T c) ≺≺ pϵ ≺≺ c if G1(a, b, c) ≺≺ pδ ≺≺ e

Therefore, T is tvs-G-cone continuous.

(⇒): Assume that T is tvs-G-cone continuous. Let ϵ > 0. Then, for any p ∈ int(P ), there exists a
δ > 0 such that

G2(T a, T b, T c) ≺≺ pϵ if G1(a, b, c) ≺≺ pδ =⇒ G2(T a, T b, T c) ∈ pϵ − int(P ) if G1(a, b, c) ∈ pδ − int(P )

=⇒ G2(T a, T b, T c) ∈ pϵ − int(P ) if G1(a, b, c) ∈ pδ − int(P )

=⇒ ζp(G2(T a, T b, T c)) < ϵ if ζp(G1(a, b, c)) < δ

=⇒ (ζp o G2)(T a, T b, T c) < ϵ if (ζp o G1)(a, b, c) < δ

=⇒ MG2(T a, T b, T c) < ϵ if MG1(a, b, c) < δ.

Hence, T is G-continuous.

Theorem 3.8. Let G1 and G2 be two tvs-G-cone metrics on ℑ and T : (ℑ, G1) → (ℑ, G2) be a function.
Then, T is tvs-G-cone continuous on ℑ iff T is tvs-G-cone sequentially continuous on ℑ.

Proof.
For p ∈ int(P ) in Y , the mapping MGi = ζpoGi such that i ∈ {1, 2} are the induced G-metrics on ℑ.
Then,

T : (ℑ, G1) → (ℑ, G2) is tvs-G-cone continuous on ℑ ⇐⇒ T : (ℑ, MG1 ) → (ℑ, MG2 ) is G-cone continuous on ℑ

⇐⇒ T : (ℑ, MG1 ) → (ℑ, MG2 ) is G-cone sequentially continuous on ℑ

⇐⇒ T : (ℑ, G1) → (ℑ, G2) is tvs-G-cone sequentially continuous on ℑ

Theorem 3.9. Let G be a tvs-G-cone metric space on ℑ. Then, a mapping p : ℑ × ℑ → Y defined
by p(x, ξ) = G(x, x, ξ) + G(x, ξ, ξ), for all x, ξ ∈ ℑ, is a tvs-cone-metric on ℑ.

Proof.
Let G be a tvs-G-cone metric space on ℑ. Define a mapping p : ℑ × ℑ → Y by p(x, ξ) = G(x, x, ξ) +
G(x, ξ, ξ), for all x, ξ ∈ ℑ.

i. Clearly p(x, ξ) ≻ θ, for all x, ξ ∈ ℑ and

p(x, ξ) = θ ⇐⇒ G(x, x, ξ) + G(x, ξ, ξ) = θ

⇐⇒ G(x, x, ξ) = θ and G(x, ξ, ξ) = θ

⇐⇒ x = ξ

Therefore, (T 1) holds.

ii. (T 2) holds trivially since G is symmetric in its all three variables.
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iii. G satisfies the inequality G(x, ξ, z) ⪯ G(x, a, a) + G(a, ξ, z), for all x, ξ, z, a ∈ ℑ. Therefore, for all
x, ξ, a ∈ ℑ,

p(x, ξ) = G(x, x, ξ) + G(x, ξ, ξ) = G(ξ, x, x) + G(x, ξ, ξ), (since G is symmetric)
⪯ G(ξ, a, a) + G(a, x, x) + G(x, a, a) + G(a, ξ, ξ)
= G(x, x, a) + G(x, a, a) + G(ξ, a, a) + G(a, ξ, ξ)
= p(x, a) + p(a, ξ)

Thus, p satisfies the condition (T 3).

This shows that p is a tvs-cone-metric on ℑ.

Afterward, we show that fixed point theorems on tvs-G-cone metric spaces can be presented via
G-metric spaces with the help of the scalarization function ζp.

Theorem 3.10. Suppose that G is a complete tvs-G cone metric and MG be the induced G-metric
on ℑ. If T : ℑ → ℑ is a mapping satisfying either

G(T x, T ξ, T z) ⪯ lG(x, ξ, z) + mG(x, T x, T x) + nG(ξ, T ξ, T ξ) + rG(z, T z, T z) (2)

or
G(T x, T ξ, T z) ⪯ lG(x, ξ, z) + mG(x, T x, x) + nG(ξ, ξ, T ξ) + rG(z, z, T z) (3)

for all x, ξ, z ∈ ℑ where 0 < l + m + n + r < 1, then T has a unique fixed point.

Proof.
For any p ∈ int(P ) in Y , we consider the function ζp. Then, by Theorem 3.4, MG = ζpoG is a G-metric
on ℑ. Since (ℑ, G) is tvs-G-cone complete, then (ℑ, MG) is also G-complete by the Theorem 3.6. Let
T satisfies Condition 2. Then, for all x, ξ, z ∈ ℑ, Lemma 2.1 implies if

G(T x, T ξ, T z) ⪯ lG(x, ξ, z) + mG(x, T x, T x) + nG(ξ, T ξ, T ξ) + rG(z, T z, T z)

then

ζp(G(T x, T ξ, T z)) ≤ ζp(lG(x, ξ, z) + mG(x, T x, T x) + nG(ξ, T ξ, T ξ) + rG(z, T z, T z))

Thus,

ζp(G(T x, T ξ, T z)) ≤ lζp(G(x, ξ, z)) + mζp(G(x, T x, T x)) + nζp(G(ξ, T ξ, T ξ)) + rζp(G(z, T z, T z))

Hence,

(ζpoG)(T x, T ξ, T z) ≤ l(ζpoG)(x, ξ, z) + m(ζpoG)(x, T x, T x) + n(ζpoG)(ξ, T ξ, T ξ) + r(ζpoG)(z, T z, T z)

Therefore,

MG(T x, T ξ, T z) ≤ lMG(x, ξ, z) + mMG(x, T x, T x) + nMG(ξ, T ξ, T ξ) + rMG(z, T z, T z)

This shows that T satisfies Condition 2.1 of Theorem 2.1 [20]. Since (ℑ, MG) is a complete G-metric
space, the existence and uniqueness of fixed point T follows from the Theorem 2.1 [20] in G-metric
spaces. Consequently, T has a unique fixed point in (ℑ, G). Similarly, we can draw the conclusion if
T satisfies Condition 3.

Note 3.11. In particular, when we take Y = E, a real Banach space, the above theorem reduces to
the theorem of Beg et al. [12].

Theorem 3.12. Suppose that (ℑ, G) is a complete tvs-G cone metric space and MG is the induced
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G-metric on ℑ. If T is a self mapping on ℑ satisfying either of the following conditions

G(T x, T ξ, T ξ) ⪯ κ{G(x, T ξ, T ξ) + G(ξ, T x, T x)} (4)

or
G(T x, T ξ, T ξ) ⪯ κ{G(x, x, T ξ) + G(ξ, ξ, T x)} (5)

for all x, ξ ∈ ℑ where 0 < κ ≤ 1
2 , then T has a unique fixed point in ℑ and T is tvs-G-cone continuous

on ℑ.

Proof.
For any p ∈ int(P ) in Y , we consider the function ζp. Then, by Theorem 3.4, MG = ζpoG is a G-metric
on ℑ. If, for all x, ξ ∈ ℑ, T satisfies Condition 4, then Lemma 2.1 gives
G(T x, T ξ, T ξ) ⪯ κ{G(x, T ξ, T ξ) + G(ξ, T x, T x)} =⇒ ζp(G(T x, T ξ, T ξ)) ≤ ζp(κ{G(x, T ξ, T ξ) + G(ξ, T x, T x)})

=⇒ ζp(G(T x, T ξ, T ξ)) ≤ κζp(G(x, T ξ, T ξ) + G(ξ, T x, T x))

=⇒ ζp(G(T x, T ξ, T ξ)) ≤ κ{ζp(G(x, T ξ, T ξ)) + ζp(G(ξ, T x, T x))}

=⇒ (ζpoG)(T x, T ξ, T ξ) ≤ κ{(ζpoG)(x, T ξ, T ξ) + (ζpoG)(ξ, T x, T x)}

=⇒ MG(G(T x, T ξ, T ξ)) ≤ κ{MG(x, T ξ, T ξ) + MG(ξ, T x, T x)}

This shows that T satisfies Condition 2.49 [20] in G-metric space (ℑ, MG). Since (ℑ, G) is tvs-G-cone
complete, by the Theorem 3.6, (ℑ, MG) is G-complete. Therefore, by the Theorem 2.8, T has a unique
fixed point in (ℑ, MG) and T is G-continuous. Hence, T has a unique fixed point in (ℑ, G) and T is
tvs-G-cone continuous by the Theorem 3.7. If T satisfies the Condition 5, then the conclusion can be
drawn in a similar way.

Theorem 3.13. Let G be a complete tvs-G cone metric and MG be the induced G-metric on ℑ. If T
is a self mapping on ℑ satisfying either of the conditions

G(T x, T ξ, T z) ⪯ κ max{G(x, T x, T x), G(ξ, T ξ, T ξ), G(z, T z, T z)} (6)

or
G(T x, T ξ, T z) ⪯ κ max{G(x, x, T x), G(ξ, ξ, T ξ), G(z, z, T z)} (7)

for all x, ξ, z ∈ ℑ where 0 < κ ≤ 1, then T has a unique fixed point in ℑ and T is tvs-G-cone
continuous on ℑ.

Proof.
For any p ∈ int(P ) in Y , we consider the function ζp. Then, by Theorem 3.4, MG = ζpoG is a G-metric
on ℑ. Since G is a tvs-G-cone complete metric on ℑ, thus (ℑ, MG) is also G-complete. If, for all
x, ξ, z ∈ ℑ, T satisfies Condition 6, then applying Lemma 2.1, if

G(T x, T ξ, T z) ⪯ κ max{G(x, T x, T x), G(ξ, T ξ, T ξ), G(z, T z, T z)

then
ζp(G(T x, T ξ, T z)) ≤ ζp(κ max{G(x, T x, T x), G(ξ, T ξ, T ξ), G(z, T z, T z)}

Thus,

ζp(G(T x, T ξ, T z)) ≤ κ max{ζp(G(x, T x, T x)), ζp(G(ξ, T ξ, T ξ)), ζp(G(z, T z, T z))}

Hence,

(ζpoG)(T x, T ξ, T z) ≤ κ max{(ζpoG)(x, T x, T x), (ζpoG)(ξ, T ξ, T ξ), (ζpoG)(z, T z, T z)}
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Therefore,

MG(T x, T ξ, T z)) ≤ κ max{MG(x, T x, T x), MG(ξ, T ξ, T ξ), MG(z, T z, T z)}

This shows that T satisfies Condition 2.19 [20] in the complete G-metric space (ℑ, MG). Thus, Theorem
2.3 [20] ensures that T has a unique fixed point in (ℑ, MG). Therefore, T has a unique fixed point in
(ℑ, G). Moreover, Theorem 2.3 [20] shows that T is continuous in (ℑ, MG). Since, by the Theorem
3.7, continuity of T in (ℑ, MG) implies the continuity of T in (ℑ, G), thus T is tvs-G-cone continuous.
We can prove the theorem similarly, if T satisfies Condition 7 in (ℑ, G).

4. Conclusion

In this paper, we investigated the relationship between the vector-valued version and scalar-valued
version of fixed point theorems of generalized cone-metric spaces and G-metric spaces. We showed
a correspondence between G-metric and tvs-G cone metric with the help of a scalarization function
defined on a locally convex Hausdorff topological vector space. If we take a real Banach space E

instead of locally convex Hausdorff space X and P is the cone in E as defined in [8]. Then, all the
results for X hold for G-cone metric spaces. Hence, these theorems extended some results of G-cone
metric spaces and proved a correspondence between any G-cone metric space and the G-metric space.
The remarkable point is that all of these are possible only because of the non-empty interior of P .
Like Theorems 3.10 and 3.12, the equivalence between the non-negative scalar-valued version and
vector-valued versions of these fixed point theorems can be proved easily.

Shortly, new generalized metric spaces are expected to be introduced, and studies on fixed point
theory are expected to continue. We hope that the results of this paper will be helpful to researchers
in this field for further research. Researchers may study the equivalence between the vector-valued
and scalar-valued versions of fixed point results in new generalized metric spaces, getting inspired by
the relations provided herein between the tvs-G cone metric spaces and G-metric spaces.
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