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Abstract
In this paper, the quantum codes over Fq are constructed by using the cyclic codes over the finite ring
R = Fq + vFq + ... + vm−1Fq, where p is prime, q = ps, m − 1|p − 1 and vm = v. The parameters of
quantum error correcting codes over Fq are obtained. Some examples are given. Morever, the quantum
quasi-cyclic codes over Fp are obtained, by using the self dual basis for Fps over Fp.
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1. Introduction
The theory quantum error correcting codes has differences from the theory classical error correcting codes. But

Calderbank et al. gave a way to construct quantum error correcting codes from classical error correcting codes in
[4].

Many good quantum codes has been constructed by using the classical cyclic codes over Fq with self orthogonal
(or dual containing) properties. Recently, some authors have constructed quantum the codes by using the linear
codes over some finite ring in [1-4,8-10,12-18].

In 2015, Gao constructed the quantum codes over Fq from the cyclic codes over a finite non chain ring Fq +
vFq + v2Fq + v3Fq , where q = pr, p is an odd prime, 3|p− 1 and v4 = v in [8]. In 2016, Sari and Siap constructed the
quantum codes over Fp from the cyclic codes of arbitrary length over Fp + vFp + ...+ vp−1Fp, where vp = v and p is
a prime in [13].

In [11], Qian et al. gave a method for constructing the self orthogonal quasi-cyclic codes and obtained a large
number of new quantum quasi-cyclic codes by CSS construction.

Our aim in this paper is firstly to construct the quantum codes over Fq by using the cyclic codes over the finite
ring R = Fq + vFq + ... + vm−1Fq, where p is a prime, q = ps, m − 1|p − 1 , vm = v and later to obtained the
parameters of the quantum quasi-cyclic codes over Fp, by using the self dual basis for Fps over Fp.

This paper is organized as follows. In section 2, some properties of the finite ring R are given. In section 3, a
sufficient and necessary condition for the cyclic codes over R that contains its dual is given. The parameters of
quantum error correcting codes are obtained from the cyclic codes over R and some examples are given. In section
4, by taking m = 3, the parameters of the quantum quasi-cyclic codes over Fp are determined.

2. Preliminaries
In [12], Shi and Yao give the following properties of the finite ringR = Fq +vFq + ...+vm−1Fq = Fq[v]/ 〈vm − v〉,

where p is a prime q = ps, m− 1|p− 1 and vm = v.
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As m− 1|p− 1, this shows that vm − v = v(v − v1)(v − v2).....(v − vm−1) with all vi’s in Fq . Let fi = v − vi and
f̂i = (vm − v)/fi where i = 0, ...,m− 1, then there exist ai, bi ∈ Fq[v] such that aifi + bif̂i = 1. Let ei = bif̂i, then
e2i = ei, and eiej = 0 ,

∑m−1
i=0 ei = 1, where i, j = 0, 1, ...,m− 1 and i 6= j. So

R = e0R⊕ e1R⊕ ...⊕ em−1R = e0Fq ⊕ ...⊕ em−1Fq

and
R ∼= R/ 〈v〉 × ....×R/ 〈v − vm−1〉 ∼= Fq × ...× Fq

They express any r ∈ R uniquely as

r = e0r0 + ...+ em−1rm−1,

where ri ∈ Fq for i = 0, ...,m− 1 in [12].

Example 2.1. For q = p = 3 and m = 3, the three idempotents are e0 = 1− v2, e1 = 2v2 + 2v, e2 = 2v2 + v.

A linear code C over R length n is an R−submodule of Rn. An element of C is called a codeword.
By defining the set

Ci = {xi ∈ Fn
q |∃x0, ..., xi−1, xi+1, ..., xm−1 ∈ Fn

q , e0x0 + ...em−1xm−1 ∈ C}

where i = 0, 1, ...,m− 1, they represent the linear code C of length n over R as

C = e0C0 ⊕ ....⊕ em−1Cm−1

where Ci are the linear codes over Fq , for i = 0, ...,m− 1 in [12].
If G is a generator matrix of C over R, then the generator matrix G is expressed as

G =

 e0G0

...
em−1Gm−1


where G0, ..., Gm−1 are the generator matrices of C0, ..., Cm−1 in [12].

For any x = (x0, x1, ..., xn−1), y = (y0, y1, ..., yn−1) ∈ Rn, the inner product is defined as

x.y =

n−1∑
i=0

xiyi

If x.y = 0, then x and y are said to be orthogonal. Let C be a linear code of length n over R, the dual code of C

C⊥ = {x : ∀y ∈ C, x.y = 0}

which is also a linear code over R of length n. A code C is self orthogonal if C ⊆ C⊥ and self dual if C = C⊥.
A code C over R is a linear code with the property that if every c = (c0, c1, ..., cn−1) ∈ C, then σ (c) =

(cn−1, c0, ..., cn−2) ∈ C. A subset C of Rn is a linear cyclic code of length n iff its polynomial representation is an
ideal of R [x] / 〈xn − 1〉 .

Proposition 2.1. [12] Let C = e0C0 ⊕ ....⊕ em−1Cm−1 be a linear code of length n over R. Then

C⊥ = e0C
⊥
0 ⊕ ....⊕ em−1C⊥m−1

Morever C is a self dual code over R if and only if C0, ..., Cm−1 are all self dual codes over Fq .

In [12], they give a special class of Gray maps, which preserves the property of self dual of linear codes from the
ring R to the finite field Fq , by using the group of invertible matrices of size m.

In [12], the Gray map Φ is defined as follows

Φ : R→ Fm
q

r = (r0, ..., rm−1) 7→ Φ((r0, ..., rm−1)) = (r0, ..., rm−1)M = rM
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for any matrix M ∈ GLm(Fq), where GLm(Fq) is the group of invertible matrices of size m and Φ is an Fq-module
isomorphism.

The Gray map is extended as follows

Φ : Rn → Fmn
q

c = (c0, ..., cm−1) 7→ Φ((c0, ..., cm−1)) = (c0M, ..., cm−1M)

Let C be a code over Fq of length n and ć = (ć0, ć1, ..., ćn−1) be a codeword of C. The Hamming weight of ć is
defined as wH (ć) =

∑n−1
i=0 wH (ći) where wH (ći) = 1 if, ći 6= 0 and wH (ći) = 0 if, ći = 0. The Hamming distance of

C is defined as dH (C) = min dH (c, ć) , where for any ć ∈ C, c 6= ć and dH (c, ć) is the Hamming distance between
two codewords with dH (c, ć) = wH (c− ć) .

In [12],the Gray weight wG(r) of r = (r0, .., rm−1) ∈ R is defined as the Hamming weight of the vector rM .
For any vector c = (c0, ..., cn−1) ∈ Rn, the Gray weight of c is defined to be the rational sum of Gray weight of its
components. For any elements c1, c2 ∈ Rn, the Gray distance between c1 and c2 is given by

dG(c1, c2) = wG(c1 − c2)

The minimum Gray weight of C is the smallest nonzero Gray weight among all codewords. If C is a linear code,
then the minimum Gray distance is the same as the minimum Gray weight.

Lemma 2.1. [12] If C is a linear code of length n over R, then Φ(C) is a linear code of length mn over Fq . Morever, the Gray
map Φ is a distance-preserving map from C to Φ(C).

Proposition 2.2. [12] Let M be an invertible matrix of size m over Fq, let C be a linear code of length n with the minimum
Gray distance d over R. If C has the generator matrix G as above and |C| = p

∑m−1
i=0 ki , then Φ(C) is a [mn,

∑m−1
i=0 ki, d]

linear code over Fq , where ki’s are the respective dimensions of the Ci’s.

Proposition 2.3. [12] Let C be a linear code of length n over R. Let M ∈ GLm(Fq) and M.MT = λIm, where λ ∈ Fq \ {0}
and Im be the identity matrix of size m over Fq . If C is a self dual code, then Φ(C) is a self dual code of length mn over Fq .

Example 2.2. Let q = p = 3 and m = 3. By taking

M =

 111
012
011


the Gray map can is defined as follows

Φ : F3 + vF3 + v2F3 → F 3
3

a+ bv + cv2 7−→ Φ(a+ bv + cv2) = (a, a+ b+ c, a− b+ c)

It is easily seen that if C is self dual, so is Φ(C).

3. Quantum codes from the cyclic codes over R

Theorem 3.1. [5](CSS Construction) Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be linear codes over GF(q) with C2 ⊆ C1.
Then there exists a quantum error-correcting code C = [[n, k1 − k2,min{d1, d⊥2 }]]q, where d⊥2 denotes the minimum
Hamming distance of the dual code C⊥2 of C2. Further, if C⊥1 = C2, then there exists a quantum error-correcting code
C = [[n, 2k1 − n, d1]].

Proposition 3.1. Let C = e0C0 ⊕ ....⊕ em−1Cm−1 be a linear code of length n over R, where Ci are the codes over Fq of
length n , for i = 0, ...,m− 1. Then C is a cyclic code over R iff Ci are the cyclic codes over Fq , for i = 0, ...,m− 1.

Proof. Let (ai0, ..., a
i
n−1) ∈ Ci, for i = 0, 1, ...,m−1. Assume thatmj = e0a

0
j +e1a

1
j +...+em−1a

m−1
j , for j = 0, ..., n−1.

Then (m0, ...,mn−1) ∈ C. Since C is a cyclic code, so (mn−1,m0, ...,mn−2) ∈ C. Note that (mn−1,m0, ...,mn−2) =
e0(a0n−1, ..., a

0
n−2)+e1(a1n−1, ..., a

1
n−2)+...+em−1(am−1n−1 , ..., a

m−1
n−2 ). Hence (ain−1,a

i
0..., a

i
n−2) ∈ Ci, for i = 0, 1, ...,m−1.

So Ci are the cyclic codes over Fq for i = 0, 1, ...,m− 1.
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Conversely, suppose that Ci are the cyclic codes over Fq, for i = 0, 1, ...,m− 1. Let (m0, ...,mn−1) ∈ C, where
mj = e0a

0
j + e1a

1
j + ...+ em−1a

m−1
j , for j = 0, ..., n− 1. Then (ain−1, a

i
0..., a

i
n−2) ∈ Ci, for i = 0, 1, ...,m− 1. Note that

(mn−1, ...,mn−2) = e0(a0n−1, ..., a
0
n−2)+e1(a1n−1, ..., a

1
n−2)+...+em−1(am−1n−1 ,..., a

m−1
n−2 ) ∈ C = e0C0⊕.....⊕em−1Cm−1.

Hence C is a cyclic code over R.

Proposition 3.2. If C = e0C0 ⊕ e1C1 ⊕ e2C2 ⊕ ...⊕ em−1Cm−1 is a cyclic code of length n over R, then

C =< e0g0(x), ..., em−1gm−1(x) >

and |C| = qmn−(deg g0(x)+deg g1(x)+....+deg gm−1(x)) where g0(x), ..., gm−1(x) are the generator polynomials of C0, ..., Cm−1
respectively.

Proposition 3.3. Let C = e0C0 ⊕ e1C1 ⊕ e2C2 ⊕ ...⊕ em−1Cm−1 be a cyclic code of length n over R, then there exists a
unique polynomial g (x) such that C = 〈g (x)〉 and g (x) | xn − 1, where g (x) = e0g0(x) + ...+ em−1gm−1(x) and gi(x)
are the generator polynomials of cyclic codes Ci, for i = 0, 1, ...,m− 1.

Lemma 3.1. [5] A cyclic code C over Fq with generator polynomial g(x) contains its dual code iff

xn − 1 ≡ 0 (modg(x)g∗(x))

where g(x)∗ is the reciprocal polynomial of g(x).

Theorem 3.2. Let C = e0C0 ⊕ e2C2 ⊕ ...⊕ em−1Cm−1 be a cyclic code of length n over R and C = 〈g(x)〉. Then C⊥ ⊆ C
iff

xn − 1 ≡ 0 (modgi(x)g∗i (x))

for i = 0, 1, 2, 3, ...,m− 1.

Proof. Let xn − 1 ≡ 0 (modgi(x)g∗i (x)) for i = 0, 1, 2, 3, ...,m − 1. From the Lemma 2.1, we have C⊥0 ⊆ C0, C
⊥
1 ⊆

C1, ..., C
⊥
m−1 ⊆ Cm−1. This shows that eiC⊥i ⊆ eiCi, for i = 0, 1, ..,m−1. We haveC⊥ = e0C

⊥
0 ⊕...⊕em−1C⊥m−1 ⊆ C,

by using the Proposition 1.1.
Conversely, if C⊥ ⊆ C, then we have eiC⊥ = eiC

⊥
i ⊆ eiC = eiCi, for any i = 0, ...,m − 1. So C⊥i ⊆ Ci, for

i = 0, ...,m− 1. So from the Lemma 2.1, we get xn − 1 ≡ 0 (modgi(x)g∗i (x)), for i = 0, 1, 2, 3, ...,m− 1.

Theorem 3.3. Let C = e0C0 ⊕ ... ⊕ em−1Cm−1 be a cyclic code of length n over R and let the parameters of Φ(C) be
[mn, k, d], where d is the minimum Gray distance of C. If C⊥ ⊆ C, then there exists a quantum error correcting code with
parameter [[mn, 2k −mn, d]] over Fq .

4. The Quantum Quasi-cyclic codes from the self orthogonal Quasi-cyclic codes over Fps

In this section, we take m as 3.
In [6], they focus on codes over the finite ring S = Fq + vFq + v2Fq, where v3 = v and q is a prime power. A

Gray map φ from Sn to F 3n
q is defined as follows;

φ : S → F 3
q

x = a0 + va1 + v2a2 7→ φ(x) = (a0, a0 + a2, a1)

where x = a0 + va1 + v2a2, for ai ∈ Fq, i = 0, 1, 2.

In [6], the Lee weight of the element of S is defined. They shown that the Gray map is a weight preserving map
and if C is a linear code over S, the minimum Lee weight of C is the same as the minimum Hamming weight of
φ(C) and if C is a self orthogonal code, so it φ(C).

Proposition 4.1. Let σ be a cyclic shift. Then φσ = σ⊗3φ.
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Proof. Let z = (z0, z1, ..., zn−1) be in Sn. Let ai, bi, ci, di ∈ Fq, for 0 ≤ i ≤ n− 1 such that zi = ai + biv + civ
2. Then,

σ(z) = (zn−1, z0, z1, ..., zn−2). From the definition of Gray map, we get φσ(z) = (an−1, a0, ..., an−2, an−1 + cn−1, a0 +
c0, ..., an−2 + cn−2, bn−1, b0, ..., bn−2).

On the other hand, since φ(z) = (a0, ..., an−1, a0 + c0, ..., an−1 + cn−1, b0, ..., bn−1), by applying σ⊗3, we have
σ⊗3φ(z) = (an−1, a0, ..., an−2, an−1 + cn−1, a0 + c0, ..., an−2 + cn−2, bn−1, b0, ..., bn−2).

Theorem 4.1. If C is a cyclic code of length n over S, then φ(C) is a quasi-cyclic code of index 3 with length 3n over Fq .

Proof. Let C be a cyclic code over S. Then σ(C) = C, so φ(σ(C)) = φ(C). It follows from the Proposition 3.1, that
σ⊗3(φ(C)) = φ(C), which means that φ(C) is a quasi-cyclic code of index 3 with length 3n over Fq .

In [11], they give a sufficient and necessary condition for a one generator l-quasi-cyclic codes over Fq contains
its dual. Morever, they give the following theorem.

Theorem 4.2. [11] Let C be an [n, k, d] quasi-cyclic code over Fq with generator of the form

g(x) = (f1(x)g1(x), ..., fl(x)gl(x))

where gi(x)|xn − 1 and (fi(x), (xm − 1)/gi(x)) = 1 for all i = 1, 2, ..., l, and for all i = 1, 2, ..., l,

xm − 1 ≡ 0(modgi(x)g∗i (x))

Then C⊥ ⊆ C and there exists a quantum QC code with [[n, 2k − n, d]].

In order to obtain the parameters of the quantum quasi-cyclic codes over Fp via self dual basis, we give necessary
some knowledges about self dual basis from [7].

Let p be a prime number and q = ps, where s is a positive integer. The trace Tr(α) over Fp of an element α ∈ Fq

is defined as

Tr(α) =

s−1∑
i=0

αpi

A basis B = {α1, ..., αs} of Fq over Fp is trace-orthogonal basis if

Tr(αiαj) =

{
nonzero, i = j
0, i 6= j

A trace-orthogonal basis is called a self dual basis if Tr(α2
i )=1, for i = 1, ..., s. In [7], it is shown that a self-dual

basis exist if and only if p is even or p and s are both odd.

In this work, we take q = ps , where p and s are both odd.

Let B = {α1, ..., αs} be a self dual basis of Fps over Fp. Let C be a quasi-cyclic code over Fps of index 3 with
length 3n. For any c = (c1, ..., cn) ∈ C,

ψ : F 3n
ps → F 3ns

p

c = (c1, ..., cn) 7→ ψ(c) = (c11, c12,..., c(3n)1, c12, ...c(3n)2, ..., c1s, ...c(3n)s)

where ci =
∑s

j=1 cijαj and cij ∈ Fp, for i = 1, ..., n.

Lemma 4.1. If C is a quasi-cyclic code of index 3 over Fps of length 3n, then ψ(C) is a quasi-cyclic code of index 3s.

Lemma 4.2. If C is a self orthogonal code over Fps of length 3n, so is ψ(C).

Theorem 4.3. If C is a self orthogonal quasi-cyclic code over Fps with the parameter [3n, k, d], the ψ(C) is also a self
orthogonal quasi-cyclic code over Fp with the parameter [3ns, sk, d

′ ≥ d].
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Theorem 4.4. Let C be a quasi-cyclic code over Fps with the parameter [3n, k, d] and C⊥ ⊆ C. Then there exists a quantum
quasi-cyclic code with the parameter [[3ns, 2sk − 3ns, d

′ ≥ d]] over Fp.

Example 4.1. Let n = 10, q = 3 and R = F3 + vF3 + v2F3. The Gray image of the code is a [30, 15, 9]. The ψ(C) is
also a self orthogonal quasi-cyclic code over F3 with the parameter [30, 15, d

′ ≥ 9]. Hence, there exists a quantum
quasi-cyclic code with the parameter [[30, 0, d

′ ≥ 9]] over F3.

Example 4.2. Let n = 28 and R = F5 + vF5 + ...+ v4F5. We have

x28 − 1 = (x+ 1)(x+ 2)(x+ 3)(x+ 4)(x6 − x5 + x4 − x3 + x2 − x+ 1)

(x6 − 2x5 − x4 − 3x3 + x2 − 2x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1)

(x6 − 3x5 − x4 − 2x3 + x2 − 3x− 1)

= f1f2...f8

in F5. Let f(x) = e0f6 + e1f6 + e2f6 + e3f8 + e4f8 and C = (f(x)) be a cyclic code over R. Clearly x28− 1 is divisible
by f6f∗6 , f8f∗8 . Hence we have C⊥ ⊆ C. Also, Φ(C) is a linear code over F5 with the parameters [140, 110, 4]. Then a
quantum code with the parameters [[140, 80, 4]] is obtained.

Quantum codes from cyclic codes

n q m Φ(C) [[N,K,D]]

3 19 7 [21, 14, 2] [[21, 7, 2]]

3 19 10 [30, 20, 2] [[30, 10, 2]]

11 5 3 [33, 18, 7] [[33, 3, 7]]

20 9 3 [60, 48, 4] [[60, 36, 4]]

27 3 3 [81, 63, 2] [[81, 45, 2]]

30 2 2 [60, 34, 6] [[60, 8, 6]]

30 5 5 [150, 145, 2] [[150, 140, 2]]

5. Conclusion
The quantum codes over Fq are constructed by using the cyclic codes over the finite ring R = Fq + vFq + ...+

vm−1Fq, where p is a prime, q = ps, m − 1|p − 1 and vm = v. The parameters of quantum error correcting codes
over Fq and the quantum quasi-cyclic codes over Fp are obtained.

By finding a Gray map over R which satisfies self orthogonal property and by taking p is even or p and s are
both odd, the parameters of quantum QC codes over Fp can be obtained, similarly.

References
[1] Dertli, A., Cengellenmis, Y. and Eren, S., Quantum codes over F2 + uF2 + vF2. Palestine Journal of Math. (2015),

1-6.

[2] Dertli, A., Cengellenmis, Y. and Eren, S., Some results on the linear codes over the finite ring F2+v1F2+...+vrF2.
International Journal of Quantum Information 14(2016), 1650012.

[3] Dertli, A., Cengellenmis, Y. and Eren, S., On quantum codes obtained from cyclic codes over A2. Int. J. Quantum
Inform. 13 (2015), 1550031.

[4] Dertli, A., Cengellenmis, Y. and Eren, S., Quantum codes over the ring F2 +uF2 +u2F2 + ...+umF2. Int. Journal
of Alg. 9(2015), 115 - 121.



The Quantum Codes over Fq and Quantum Quasi-cyclic Codes over Fp 93

[5] Calderbank, A.R., Rains, E.M., Shor, P.M. and Sloane, N.J.A., Quantum error correction via codes over GF (4).
IEEE Trans. Inf. Theory 44( 1998), 1369-1387.

[6] Melakheso, A. and Guenda, K., The dual and the Gray image of codes over Fq +vFq +v2Fq , arXiv:1504.08097v1.

[7] Seroussi, G. and Lempel, A., Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields,
SIAM. Journal Comput. 9(1980), 758-767.

[8] Gao, J., Quantum codes from cyclic codes over Fq + vFq + v2Fq + v3Fq . Int. Journal of Quantum Information, 2015.

[9] Qian, J., Quantum codes from cyclic codes over F2 + vF2. Journal of Inform.& computational Science 10( 2013),
1715-1722.

[10] Qian, J., Ma, W. and Gou, W., Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inform. 7( 2009),
1277-1283.

[11] Qian, J., Ma, W. and X. Wang, Quantum error correcting codes from quasi-cyclic codes over finite ring. Int. J.
Quantum Inform. 6( 2008), 1263-1269.

[12] Shi, M. and Yao, T., Skew cyclic codes over Fq + vFq + v2Fq + ...+ vm−1Fq , 2016.

[13] Sari, M and Siap, I., On Quantum codes from cyclic codes over a class of non chain rings. Bull Korean Math. Soc.
53(2016), 617-1628.

[14] Ashraf, M. and Mohammad, G., Quantum codes from cyclic codes over F3 + vF3. International Journal of
Quantum Information 12(2014), 1450042.

[15] Ashraf, M. and Mohammad, G., Construction of quantum codes from cyclic codes over Fp + vFp. International
Journal of Information and Coding Theory 2(2015), 137-144.

[16] Ashraf, M. and Mohammad, G., Quantum codes from cyclic codes over Fq + uFq + vFq + uvFq. Quantum
Information Processing 10(2016), 4089-4098.

[17] Kai, X. and Zhu, S., Quaternary construction of quantum codes from cyclic codes over F4 +uF4. Int. J. Quantum
Inform. 9( 2011), 689-700.

[18] Yin, X. and Ma, W., Gray Map and Quantum Codes Over The Ring F2+uF2+u2F2. International Joint Conferences
of IEEE TrustCom-11, 2011.

Affiliations

YASEMIN CENGELLENMIS
ADDRESS: Trakya University, Department of Mathematics, 22000, Edirne-Turkey.
E-MAIL: ycengellenmis@gmail.com
ORCID ID: 0000-0002-8133-9836

ABDULLAH DERTLI
ADDRESS: Ondokuz Mayis University, Department of Mathematics, 55139, Samsun-Turkey.
E-MAIL: abdullah.dertli@gmail.com
ORCID ID: 0000-0001-8687-032X


	Introduction
	Preliminaries
	Quantum codes from the cyclic codes over R
	 The Quantum Quasi-cyclic codes from the self orthogonal Quasi-cyclic codes over Fps
	Conclusion

