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Abstract

In this paper, the quantum codes over Fj, are constructed by using the cyclic codes over the finite ring
R = F, +vF; + ... + v" 'F,, where p is prime, ¢ = p°, m — 1|p — 1 and v™ = v. The parameters of
quantum error correcting codes over F are obtained. Some examples are given. Morever, the quantum
quasi-cyclic codes over F), are obtained, by using the self dual basis for F,: over F,.
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1. Introduction

The theory quantum error correcting codes has differences from the theory classical error correcting codes. But
Calderbank et al. gave a way to construct quantum error correcting codes from classical error correcting codes in
[4].

Many good quantum codes has been constructed by using the classical cyclic codes over F;, with self orthogonal
(or dual containing) properties. Recently, some authors have constructed quantum the codes by using the linear
codes over some finite ring in [1-4,8-10,12-18].

In 2015, Gao constructed the quantum codes over F, from the cyclic codes over a finite non chain ring F;, +
vF, +v?F, + v3F,, where ¢ = p", p is an odd prime, 3|p — 1 and v* = v in [8]. In 2016, Sari and Siap constructed the
quantum codes over F,, from the cyclic codes of arbitrary length over F, + vF), + ... + vP "1 F,, where v? = v and p is
a prime in [13].

In [11], Qian et al. gave a method for constructing the self orthogonal quasi-cyclic codes and obtained a large
number of new quantum quasi-cyclic codes by CSS construction.

Our aim in this paper is firstly to construct the quantum codes over F;, by using the cyclic codes over the finite
ring R = F, + vF, + ... + v 'F,, where p is a prime, ¢ = p*, m — 1|p — 1, v™ = v and later to obtained the
parameters of the quantum quasi-cyclic codes over F), by using the self dual basis for F,s over F,.

This paper is organized as follows. In section 2, some properties of the finite ring R are given. In section 3, a
sufficient and necessary condition for the cyclic codes over R that contains its dual is given. The parameters of
quantum error correcting codes are obtained from the cyclic codes over R and some examples are given. In section
4, by taking m = 3, the parameters of the quantum quasi-cyclic codes over F}, are determined.

2. Preliminaries

In [12], Shi and Yao give the following properties of the finite ring R = F, + vF, +...+v™ ' F, = F,[v]/ (v™ — v),
where pis a prime ¢ = p®, m — 1|p — 1 and v = v.
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As m — 1|p — 1, this shows that v™ — v = v(v — v1)(v — v2).....(V — V;p—1) with all v;’s in F},. Let f; = v — v; and

fi = (v™ —v)/f; where i = 0,...,m — 1, then there exist a;, b; € F,[v] such that a; f; + bifi =1. Lete; = bifi, then

e? =¢;,and e;e; =0, ZZZBI e; =1, wherei,j =0,1,...,m — land i # j. So

R=¢egR®Pe1R®..®ep_1R= equ D...D em_qu

and
R=R/ (W) X ... x R/ (v —vp_1) 2 Fy x ... x F,

They express any r € R uniquely as
r=egrg+ ... t €m—1Tm—1,
wherer; € Fyfori=0,...,m — 1in[12].
Example 2.1. For ¢ = p = 3 and m = 3, the three idempotents are eg = 1 — v?, e1 = 20 + 2v, 2 = 20 + v.

A linear code C over R length n is an R—submodule of R". An element of C'is called a codeword.
By defining the set

Ci=A{z; € F}'|3x0, s Tim1, Tig1, 0, D1 € Fl €020 + ocip 171 € C}
where i =0, 1,...,m — 1, they represent the linear code C' of length n over R as
C = 600(] D ....D em,lCm,l

where C; are the linear codes over F, fori =0, ...,m — 1in [12].
If G is a generator matrix of C' over R, then the generator matrix G is expressed as

60G0
G =
€m,1Gm,1

where Gy, ..., Gy,—1 are the generator matrices of Cy, ..., Cy,,—1 in [12].
For any = = (20, Z1, ..., Tn-1), ¥ = (Y0, Y1, ---, Yn—1) € R", the inner product is defined as

n—1
Ty = Z T3Yi
=0

If x.y = 0, then z and y are said to be orthogonal. Let C be a linear code of length n over R, the dual code of C
Ct={x:VyeC xy=0}

which is also a linear code over R of length n. A code C is self orthogonal if C C C + and self dual if C = C+.
A code C over R is a linear code with the property that if every ¢ = (co,c1,...,cn—1) € C, then o (c) =

(€n—1,€0,-..sCn—2) € C. A subset C of R"™ is a linear cyclic code of length n iff its polynomial representation is an
ideal of R[z] / (™ — 1) .

Proposition 2.1. [12] Let C' = egCy @ ... @ €4,—1Cy—1 be a linear code of length n over R. Then
Ct=eCl@...®epn 1CE_,
Morever C is a self dual code over R if and only if Cy, ..., Cyn—1 are all self dual codes over Fy,.

In [12], they give a special class of Gray maps, which preserves the property of self dual of linear codes from the
ring R to the finite field F,, by using the group of invertible matrices of size m.
In [12], the Gray map @ is defined as follows

d : R— F;n
r=(roy e, Pm—1) = ®((r0, s "m—-1)) = (FoyeersTm-1)M =1M
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for any matrix M € GL,,(F;), where GL,,(F,) is the group of invertible matrices of size m and ® is an F;-module
isomorphism.
The Gray map is extended as follows

® : R FT
c=(coyeeyCmo1) — P((coy ey Cm—1)) = (coM,...;cpm-1M)

Let C be a code over F, of length n and é = (¢, ¢4, ..., é,—1) be a codeword of C. The Hamming weight of ¢ is
defined as wy (¢) = Z?:_()l wy (é;) where wy (¢;) = 11if, é; # 0 and wy (é;) = 01if, é; = 0. The Hamming distance of
C'is defined as dy (C) = mindy (c, é) , where for any é € C, ¢ # é and dy (¢, é) is the Hamming distance between
two codewords with d (¢, é) = wg (¢ — ¢é).

In [12],the Gray weight wg(r) of = (19, ..,"m—1) € R is defined as the Hamming weight of the vector r M.
For any vector ¢ = (cg, ..., cn—1) € R", the Gray weight of c is defined to be the rational sum of Gray weight of its
components. For any elements ¢, c; € R", the Gray distance between ¢; and c¢; is given by

da(c1, c2) = wa(er — c2)

The minimum Gray weight of C is the smallest nonzero Gray weight among all codewords. If C is a linear code,
then the minimum Gray distance is the same as the minimum Gray weight.

Lemma 2.1. [12] If C' is a linear code of length n over R, then ®(C) is a linear code of length mn over F,. Morever, the Gray
map @ is a distance-preserving map from C' to ®(C).

Proposition 2.2. [12] Let M be an invertible matrix of size m over F,, let C be a linear code of length n with the minimum

Gray distance d over R. If C has the generator matrix G as above and |C| = pito ki then o(C) isa [mn, Z;:Jl ks, d]
linear code over F,, where k;’s are the respective dimensions of the C;’s.

Proposition 2.3. [12] Let C be a linear code of length n over R. Let M € GL,,(F,) and M.M™* = XI,,,, where X € F,\ {0}
and I,,, be the identity matrix of size m over F. If C is a self dual code, then ®(C) is a self dual code of length mn over F,.

Example 2.2. Let ¢ = p = 3 and m = 3. By taking

111
M= | 012
011
the Gray map can is defined as follows
P : F3+vF3 +v?F3 — F3

2

a+bv+c? — Pla+bv+cev?)=(a,a+b+c,a—b+c)

It is easily seen that if C' is self dual, so is ®(C).

3. Quantum codes from the cyclic codes over R

Theorem 3.1. [5](CSS Construction) Let Cy = [n, kq, d1]q and Cy = [n, ko, dg]q be linear codes over GF(q) with Cy C C4.
Then there exists a quantum error-correcting code C' = [[n, k1 — ko, min{d, d%}}]q, where dy denotes the minimum

Hamming distance of the dual code Cy- of Cs. Further, if Ci- = Ca, then there exists a quantum error-correcting code
C= [[n, le - n,dl]].

Proposition 3.1. Let C = eqCy @ .... P ey—1Ch—1 be a linear code of length n over R, where C; are the codes over Fy; of
lengthn , fori =0, ...,m — 1. Then C' is a cyclic code over R iff C; are the cyclic codes over Fy, fori = 0,...,m — 1.

Proof. Let (af, ...,al,_,) € C;, fori =0,1,...,m—1. Assume that m; = ega9+e1a}+...+em_1a;”_l,forj =0,..,n—1.

Then (my, ..., mn—1) € C. Since C is a cyclic code, so (my_1, Mg, ..., mp_2) € C. Note that (m,_1,mg, ..., Mp_2) =
-1 ~1 ; ; ; ,
eo(al_y,...,al_s)+ei(ah_q,.yal _o)+.tem_1(al 7, ...;a 7). Hence (af,_,,ab...,al,_5) € C;, fori =0,1,....,m—1.

ey Ay

So C; are the cyclic codes over Fy fori =0,1,...,m — 1.
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Conversely, suppose that C’ are the cyclic codes over £y, for 1=0, 1, ..., m — 1. Let (mg, ...,mp,—1) € C, where
mj = epal +e1aj + ...+ em— 1a]" ~!,forj=0,..,n—1. Then (a},_y,a}...,a},_,) € C;, fori=0,1,...,m — 1. Note that
(mn—la"'vmn—Q) *60( %—1" ’an—2)+61( 711—17- 7a71L—2)+"'+em,—1( nflla ) :1" 21) S C—Goco@ ----- EBem—lcvm—l-

Hence C'is a cyclic code over R.
O

Proposition 3.2. If C = eoCy @ €1C1 @ €2C2 @ ... B €1—1Ch—1 15 a cyclic code of length n over R, then

C =< 6090($), "'7em—1gm—1(x) >

and |C| = g~ (deg go(w)+deg g1 (z)+-tdeg gm—1(2)) where go(z), ..., gm—1(x) are the generator polynomials of Cy, ..., Crn—1
respectively.

Proposition 3.3. Let C = eqCy @ €1C1 B e2C2 & ... @ epy—1Cp—1 be a cyclic code of length n over R, then there exists a
unique polynomial g (x) such that C = (g (z)) and g (z) | ™ — 1, where g (z) = eogo(x) + ... + em—19m—1(x) and g;(z)
are the generator polynomials of cyclic codes C;, fori =0,1,...,m — 1.

Lemma 3.1. [5] A cyclic code C over F, with generator polynomial g(x) contains its dual code iff
2" —1=0(modg(z)g*(x))
where g(x)* is the reciprocal polynomial of g(x).
Theorem 3.2. Let C' = egCo @ e2Co2 & ... B €4,—1Cy—1 be a cyclic code of length n over R and C = (g(z)). Then ctcc
iff
2" —1=0(modgi(x)g; (x))
fori=0,1,2,3,...m—1.

Proof. Let 2" — 1 = 0(modg;(z)g} (z)) fori = 0,1,2,3,. — 1. From the Lemma 2.1, we have Cg- C C’O,C’f C
C1,...,C-_, C Cp,—1. This shows that e;Ci- C eZC’z,forz = 0,1,. m—1. Wehave C+ = ¢yCi-@...@e,,_1C=_; C C,
by using the Proposition 1.1.

Conversely, if C+ C O, then we have ¢;C* = ¢,Ci- C ¢,C = ¢,C;, forany i = 0,. — 1. So Ci+ C ¢, for
i1 =0,...,m — 1. So from the Lemma 2.1, we get " — 1 = 0 (modg;(z)g; (z)), forz—0123 m— 1. O

Theorem 3.3. Let C = ¢gCy & ... ® €m—1Cm—1 be a cyclic code of length n over R and let the parameters of ®(C') be
[mn, k, d), where d is the minimum Gray distance of C. If C*+ C C, then there exists a quantum error correcting code with
parameter [[mn, 2k — mn, d]] over F,.

4. The Quantum Quasi-cyclic codes from the self orthogonal Quasi-cyclic codes over F),:

In this section, we take m as 3.
In [6], they focus on codes over the finite ring S = F,, + vF, + v*F,, where v® = v and ¢ is a prime power. A
Gray map ¢ from S™ to F)" is defined as follows;

¢ : S—F}
T = ag +vay +v%ay — ¢(x) = (ag,ap + az,a)
where = = ag + va; + v?ay, for a; € F,,i=0,1,2.
In [6], the Lee weight of the element of S is defined. They shown that the Gray map is a weight preserving map
and if C is a linear code over S, the minimum Lee weight of C is the same as the minimum Hamming weight of

¢(C) and if C'is a self orthogonal code, so it ¢(C).

Proposition 4.1. Let o be a cyclic shift. Then po = c©3¢.
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Proof. Let z = (20, 21, ..., zn—1) be in S™. Let a;, b;, ¢;, d; € Fy, for 0 <i < n — 1such that z; = a; + b;v + ¢;v*. Then,
0(2) = (2n-1, 20, 21, ---, Zn—2). From the definition of Gray map, we get ¢o(z) = (an—1,a0, ..., An—2, Gn—1 + Cn—1, a0 +
Coy +evy An—2 + Cn—2, bn—h b07 ceey bn—Q)-

On the other hand, since ¢(2) = (ag, ..., an—1, a0 + Co, -y -1 + Cn—1, b0, ..., bu_1), by applying ¢®3, we have
03P(2) = (an-1,00, s -2, an—1 4 Cp—1,00 + Co, ..., An—2 + Cp—2,by_1, b0, ..., by_2).
O

Theorem 4.1. If C is a cyclic code of length n over S, then ¢(C') is a quasi-cyclic code of index 3 with length 3n over Fy.

Proof. Let C be a cyclic code over S. Then o(C) = C, so ¢(c(C)) = ¢(C). It follows from the Proposition 3.1, that
o®3(¢(C)) = ¢(C), which means that ¢(C) is a quasi-cyclic code of index 3 with length 3n over F.
O

In [11], they give a sufficient and necessary condition for a one generator [-quasi-cyclic codes over F; contains
its dual. Morever, they give the following theorem.

Theorem 4.2. [11] Let C be an [n, k, d] quasi-cyclic code over F, with generator of the form

9(x) = (fr(x)g1(2), .., fi(x)gi(2))
where g;(z)|z™ — Land (fi(z), (™ —1)/gi(x)) =1foralli =1,2,....l,and forall i = 1,2, ...,1,
2™ — 1 = 0(modgi(x)g; (x))
Then C*+ C C and there exists a quantum QC code with [[n, 2k — n, d]).

In order to obtain the parameters of the quantum quasi-cyclic codes over F}, via self dual basis, we give necessary
some knowledges about self dual basis from [7].

Let p be a prime number and g = p*, where s is a positive integer. The trace 77 («) over F), of an element a € F,
is defined as

s—1
Tr(a) = Z o
i=0

Abasis B = {ai, ..., a5} of F; over F, is trace-orthogonal basis if

nonzero, ¢ = j

Tr(a;o ) = { 0, i

A trace-orthogonal basis is called a self dual basis if Tr(a?)=1, for i = 1, ..., s. In [7], it is shown that a self-dual
basis exist if and only if p is even or p and s are both odd.

In this work, we take ¢ = p°* , where p and s are both odd.

Let B = {a1, ..., as} be a self dual basis of F,- over F,. Let C be a quasi-cyclic code over F,: of index 3 with
length 3n. For any ¢ = (¢q, ..., ¢n) € C,

¢ B F
c=(c1,.ycn) = P(c) = (C11,C12,-, C(38n)15 C125 ---C(3n)25 -+ Clss ++-C(3n)s)
where ¢; = 327 cijaj and ¢;; € Fp, fori=1,...,n.
Lemma 4.1. If C is a quasi-cyclic code of index 3 over F): of length 3n, then 1)(C') is a quasi-cyclic code of index 3s.
Lemma 4.2. If C is a self orthogonal code over F,s of length 3n, so is 1(C').

Theorem 4.3. If C' is a self orthogonal quasi-cyclic code over F,- with the parameter [3n,k,d), the 1(C) is also a self
orthogonal quasi-cyclic code over F, with the parameter [3ns, sk,d > d.
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Theorem 4.4. Let C be a quasi-cyclic code over F,,- with the parameter [3n, k, d] and C+ C C. Then there exists a quantum
quasi-cyclic code with the parameter [[3ns, 2sk — 3ns,d > d]] over F,,.

Example 4.1. Letn = 10,q = 3 and R = F3 + vF3 + v?F;. The Gray image of the code is a [30, 15,9]. The ¢(C) is
also a self orthogonal quasi-cyclic code over F; with the parameter [30, 15,d > 9]. Hence, there exists a quantum
quasi-cyclic code with the parameter [[30,0,d > 9]] over Fs.

Example 4.2. Letn = 28 and R = F; + vF5 + ... + v*F5. We have

28_1

(x+1)(z+2)(z+3)(z+4) (2 —2® +2* — a3+ 22—z +1)
(25 —22° —2* =323 +2? — 20 — D)2 + 25 + 2 + 23+ 2?24+ 1)
(2° — 325 —2* —22% + 2% — 32 — 1)
= fifa--Js
in F5. Let f(x) = eofs +e1fs +eafs +esfs +esfs and C = (f(z)) be a cyclic code over R. Clearly 28 — 1 is divisible

by fefs, fsfi. Hence we have C+ C C. Also, ®(C) is a linear code over F; with the parameters [140, 110, 4]. Then a
quantum code with the parameters [[140, 80, 4]] is obtained.

Quantum codes from cyclic codes

n ¢ m __ 2(C) [N, K, D]]
3 19 7 [21,14,2]  [[21,7,2]]
3 19 10 [30,20,2]  [[30,10,2]]
11 503 [33,18,7  [[33,3,7]]
20 9 3 [60,48,4]  [[60,36,4]
27 3 3 [81,63,2]  [[81,45,2]]
30 2 2 [60,34,6]  [[60,8,6]
30 5 5 [150,145,2] [[150,140,2]]

5. Conclusion

The quantum codes over F; are constructed by using the cyclic codes over the finite ring R = F, + vF, + ... +
v™~1F,, where p is a prime, ¢ = p*, m — 1|p — 1 and v™ = v. The parameters of quantum error correcting codes
over F, and the quantum quasi-cyclic codes over F}, are obtained.

By finding a Gray map over R which satisfies self orthogonal property and by taking p is even or p and s are
both odd, the parameters of quantum QC codes over F), can be obtained, similarly.
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