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bstract- This paper proposes a novel feature set for drivers’ stress level recognition. The proposed feature set 

consists of data-independent and almost uncorrelated feature pairs for each stress level with very strong 

intra-class and relatively weak inter-class correlations, constructed by realizing a correlation analysis on the 

popular features studied in the literature. By using the proposed feature set, a maximum of 100% stress level 

recognition accuracy is achieved with an average increment of 24.85% while a mean reduction rate of 88.01% is 

satisfied in false positive rate compared to the full feature set. These outcomes clearly show that the proposed feature 

set can confidently be integrated into the driving assistance systems. 

Keywords- Stress Recognition, Feature Selection, Feature Correlation 

I. INTRODUCTION 

 Distress (negative stress), the negative emotions and unexpected behaviors of an individual as a result 

of physical and emotional deterioration, is analyzed as acute, episodic acute and chronic stress due to its effects 

and duration of these effects [1, 2]. It is known that the effects of distress on drivers affect the driving 

performance negatively, concluding in traffic violations or accidents [3, 4]. Related studies show that the drivers 

mostly experience acute stress due to  road conditions, traffic density, social interactions, unexpected situations, 

other drivers’ or pedestrians’ behaviors, events that impact time schedule, and difficult driving due to urban 

planning [5, 6]. Acute stress is known to be a short-term stress caused by daily life stressors related to recent past 

or near future [5], and by stimulating the sympathetic nervous system, it physiologically shows itself in 

increments in blood sugar level, respiration rate, number of heartbeat, blood pressure, and muscle activity; 

shortness of breath, sweaty palms, cold hands or foots, dizziness, chest pain, headache, activation of the blood 

coagulation mechanism, irritable bowel syndrome and pupil dilation [7]. Electrocardiogram (ECG), 

Photoplethysmogram (PPG), Galvanic Skin Response (GSR), Electromyogram (EMG), and Respiration (RESP) 

are the physical sensors used for digitizing these effects. 

 In this paper, a correlation analysis of a number of popular measurements computed from the mentioned 

physical sensors with each other and also with the stress levels is made. As the result of this analysis, the full 

correlated measurements with each other are eliminated, and the very strongly correlated measurements with 

each stress level are determined. These measurements are then used for stress level recognition by using Logistic 

Linear Classifier (LLC), k-Nearest Neighbor (kNN), random forest, decision tree, and Support Vector Machines 

(SVM) classifiers. The accuracy in stress level recognition is reached up to 100%, and shows a remarkable 

amount of increment against when all of the measurements are utilized.  

This paper is organized as follows: the studies related with stress level recognition in the literature are 

summarized in the following section. In Section 3, the experimental studies are explicitly defined and the 

succeeded results and discussions on these results are given in Section 4. The main conclusions are indicated in 

the last section. 
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II. BACKGROUND 

The studies related to stress recognition analyze the stress responses on sympathetic nervous system and 

parasympathetic nervous system based on the fact that SNS is stimulated in a stressed state, and PNS in a relaxed 

state [2]. These analyses are widely realized on ECG [7-18, 20-27], GSR [7-14, 16, 17, 19, 20, 23, 25-27], RESP 

[7, 9-17, 20, 23, 25, 26], EMG [7, 9-11, 14, 16, 17, 20, 21, 26], and PPG [19] signals.  

The variations in the heart beats are analyzed by Heart Rate (HR) and Heart Rate Variability (HRV) 

measurements using ECG [7-18, 20-27] and PPG [19] signals. Heart rate is the frequency of heart beats per 

minute, and HRV indicates the variations between heart beats. The most utilized measurements for HR are the 

mean (MHR) [7, 11, 14, 16, 17, 20, 22, 25-27] and the standard deviation (SDHR) [11, 14, 16, 17, 20, 25] of 

heart rate. The median of HR [20], variance of HR [20], maximum HR [27], and minimum HR [27] are also used 

for HR analyses.  

The HRV is analyzed on both time and spectral domain. The time-domain measurements for HRV 

include the mean of N-to-N intervals (MNN) [19, 23], the standard deviation of N-to-N intervals (SDNN) [18, 

19, 23, 24], the root-mean-square of successive interval differences (RMSSD) [18, 19, 23, 26], the triangular 

interpolation of the N-to-N interval histogram [23], the number of N-to-N interval differences differ by more 

than 50 milliseconds (NN50) [18], the percentage of NN50 over the number of heart beats (pNN50) [18, 19, 23], 

the percentage of the number of N-to-N interval differences differ by more than 20 milliseconds over the number 

of heart beats (pNN20) [19], the mean of first differences (MFD) [7,18, 22], the mean of second differences 

(MSD) [18], the mean of QRS-to-QRS intervals (MQRS) [22], the mean of R-to-R intervals (MRR) [22], the 

mean of Q-to-Q intervals (MQQ) [22], the mean of S-to-S intervals (MSS) [22], the mean of Q-to-R intervals 

(MQR) [22], the mean of R-to-S intervals (MRS) [22], the PPG pulse height [19], the PPG rise time [19], the 

PPG fall time [19], the PPG cardiac period [19], the PPG instantaneous heart rate [19], and the heart rate 

variation from baseline [8]. The total spectral power (TP) [19], the spectral powers of very low frequency band 

(VLF) [18, 19, 23], the low frequency band (LF) [9, 10, 14, 17-19, 23, 25, 26], the high frequency band (HF) [9, 

10, 18, 19, 23, 25, 26], and the LF/HF ratio [9, 10, 12, 13, 18, 19, 23-26] are the frequently used HRV 

measurements in Fourier domain. Besides, the VLF/TP ratio [12, 13], the LF/VLF ratio [12, 13], the HF/VLF 

ratio [12, 13], the spectrum entropy [12]; the QRS power spectrum [15], the power samples of the R-peaks [21], 

the mean and the standard deviation in Wavelet domain [25] are also used for spectral HRV analysis. 

Sweaty palms and cold hands or foots cause changes on skin conductance (SC) of human body. In the 

literature, the SC is analyzed in three groups. One of the group of features are directly extracted from the GSR 

and includes the mean (MSC) [9, 11, 14, 16, 17, 20, 25, 27], the median [20], the variance (VarSC) [9, 20], the 

standard deviation (SDSC) [11, 1, 17, 20, 25], the maximum [27] and the minimum [27] of the skin conductivity. 

Another group analyzes the Skin Conductance Level (SCL – the tonic component of GSR) by means of the mean 

of SCLs (MSCL) [23, 26] and the variance of SCLs (VarSCL) [23]. The most popular group analyzes the Skin 

Conductance Response (SCR – the phasic component of GSR) through the sum of frequency of occurrence [9], 

the number of peaks [19, 25, 27], the number of local maxima [26], the number of SCRs (NSCR) [10, 14, 17, 

23], the rate of SCR (RSCR) [7], the mean of SCRs (MSCR) [7, 23], the variance of SCRs (VarSCR) [23], the 

mean amplitude (MAmp – mean value of the increases in SC between SCR initiations and SCR peaks) [7, 27], 

the maximum phasic amplitude (MaxPhAmp) [23], the amplitude sum of SCRs (AmpSum) [23], the magnitude 

[14, 17], the peak amplitude sum (PAmpSum) [19], the peak energy sum (PEngSum) [19], the sum of 

magnitudes [9, 10, 25], the first absolute difference (FAD) [12, 13], MFD [7], the mean of positive derivative 

[26], the mean of absolute derivative [26], the proportion of positive samples in derivative [26], the area of 

orienting responses [14, 17, 23, 25], the sum of the estimated areas under the responses [9, 10], the latitude (Lat) 

[23], the rise rate average (MRT) [19, 27], the peak rise time sum (PRTSum) [19], the decay rate average [19], 

the percentage decay [19], the half-recovery sum (HalfRecSum) [19], the duration [14, 17], the mean rise 

duration [7], and the sum of durations [9, 10, 25]. Besides, number of the nonspecific response [23] is also used. 

These features are extracted either from hand GSR [7, 12, 23, 27] or both hand and foot GSRs [11, 14, 16, 17, 

20, 25, 26]. 

The respiration rate as well as the breathing amplitudes (BA) and the breathing durations vary between 

relaxed and stressed states. These metrics are analyzed on time-domain using the mean (MRESP) [9, 10, 14, 17, 

20, 25], the standard error of the mean (SEM) [23], the median [20], the variance [9, 10, 20], and the standard 

deviation (SDRESP) [14, 17, 20, 25, 26] of the RESP signal; the respiration rate (RESPR) [7, 11, 15, 16, 23, 26], 

the ratio of heart rate or RESPR (HR/RESPR) [12], the central respiration frequency [23], the difference between 

maximal respiration and MRESP (range) [26]; the maximum breathing amplitude (MaxBA) [23], the minimum 

breathing amplitude (MinBA) [23], the mean of breathing amplitude (MBA) [7], the difference between 



İdil IŞIKLI ESENER / BŞEÜ Fen Bilimleri, 6 (1), 12-23, 2019 

  

 14 

 

maximum and minimum values of breathing amplitude (MaxBA-MinBA) [23], the second difference of 

breathing amplitude (SDBA) [23], the MFD [7, 23], the mean of the second difference (MSD) [23], the standard 

deviation of the first difference (SDFD) [23], the standard deviation of the second difference (SDSD) [23]; the 

skewness [23], the kurtosis [23], and the entropy [13] measurements in the literature. In addition to time-domain 

measurements, these metrics are also analyzed in Fourier domain computing the spectral powers of RESP signals 

[10, 14, 17, 23, 25] within the bands 0-to-0.1 Hz, 0.1-to-0.2 Hz, 0.2-to-0.3 Hz, and 0.3-to-0.4 Hz.  

Characteristics of increasing muscle activity in a stressed state are defined, in the literature, by the mean 

(MEMG) [9-11, 14, 16, 17, 20, 21], the variance [9, 20], the standard deviation [11, 20], the median [20], the 

zero-crossing-rate (ZCR) [21], the root-mean-square (RMS) [16, 21, 26], the root-mean-quad (RMQ) [28], the 

number of contractions per minute [11], the power spectrum [21], and the amplitude modulation of the envelope 

[21]  measurements of the EMG signal.  

III. EXPERIMENTAL STUDY 

A. Database 

The MIT-BIH PhysioNet Multi-parameter Database [29] is used for drivers’ stress level recognition in 

this paper. This database consists of ECG, EMG, foot GSR, hand GSR, heart rate (HR), and respiration signals 

collected by Healey and Piccard [10] from wearable sensors on 17 automobile drivers while driving from MIT’s 

East Garage to River Street Bridge and back through three cities and two highways between an initial rest and a 

final rest states. A marker in the database indicates the durations of rest states, city drive and highway drive. It is 

defined as one in rest state has low stress (LS) while he has moderate stress (MS) and high stress (HS) during 

highway and city drives, respectively in the database. The hand GSR, foot GSR, and respiration signals are 

sampled at 31 Hz while ECG and EMG signals are sampled at 496 and 15.5 Hz, respectively [10].  

10 of the 17 drivers’ bio-signals are used in this paper because of missing signals and non-clear markers 

of other drivers’. The list of these 10 drivers is given in Table 1. 

Table 1. List of bio-signals’-used drivers.  

Record Names 

drive5 drive6 drive7 drive8 drive9 

drive10 drive11 drive12 drive15 drive16 

B. Feature Extraction 

1) ECG Features: Initially, a pre-processing is realized on ECG signals for time-domain feature 

extraction in order to remove baseline wander and muscle noise by applying a bandpass filter with cut-off 

frequencies of 0.5 Hz and 4 Hz. The time-domain ECG features in the literature related to HR and HRV are 

driven by the R-peaks of the ECG signal. Hence, R-peak detection is realized on the pre-processed ECG signals 

using inverted second derivative method [30]. In addition to the time-domain feature extraction, frequency-

domain feature extraction on ECG signals is also realized for analyzing the energy distributions. The ECG 

features extracted in this paper are given in Table 2. 

2) GSR Features: A Butterworth bandpass filter with cut-off frequencies of 0.1 Hz and 1 Hz is applied 

to hand GSR and foot GSR signals to remove baseline wander in these signals. The GSR features extracted from 

both hand GSR and foot GSR in this paper are given in Table 3. 

3) Respiration Features: A pre-processing operation is performed on respiration signals to remove 

baseline wander and body movements related noises as given in [23]. This operation is realized by concatenating 

a moving-average filter and a 10th order low pass filter with a cut-off frequency of 1 Hz [23]. The respiration 

features extracted in this paper are given in Table 4. 

4) EMG Features: A Butterworth low pass filter with a cut-off frequency of 500 Hz is applied to EMG 

signals for removing noises caused by sudden body movements. The EMG features extracted in this paper are 

given in Table 5. 
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Table 2. The ECG features extracted for drivers' stress analysis. 

 Time-Domain ECG Features Frequency-Domain ECG Features 

Features Related to HR 
 MHR 

 SDHR 
-  

Features Related to HRV 

 MNN 

 SDNN 

 RMSSD of NN intervals (RMSSD_NN) 

 NN50 

 pNN50 

 NN20 

 pNN20 

 MRR 

 SDRR 

 RMSSD of RR intervals (RMSSD_RR) 

 TP 

 power of ultra-low frequency (ULF) (≤ 0.003 Hz)  

 VLF (0.003 Hz – 0.04 Hz)  

 LF (0.04 Hz – 0.15 Hz)  

 HF (0.15 Hz – 0.4 Hz)  

 VHF (≥ 0.4 Hz)  

 LF/HF  

Table 3. The GSR features extracted for drivers' stress analysis. 

Time-Domain GSR Features 

 MAmp 

 PAmpSum 

 AmpSum 

 MaxPhAmp 

 NSCR 

 RSCR 

 MSCR 

 VarSCR 

 MSCL 

 VarSCL 

 MFD of GSR (MFD_GSR) 

 MSC 

 VarSC 

 SDSC 

 HalfRecSum 

 mean half recovery (HalfRecMean) 

 Lat 

 PRTSum 

 MRT 

 PEngSum 
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Table 4. The respiration features extracted for drivers' stress analysis. 

Time-Domain Respiration Features Frequency-Domain Respiration Features 

 MRESP 

 SDDRESP 

 SEM 

 skewness 

 kurtosis 

 entropy 

 RESPR 

 HR/RESPR 

 MaxBA 

 MinBA 

 MBA 

 MaxBA-MinBA 

 range 

 MFD of RESP (MFD_RESP) 

 SDFD 

 MSD 

 SDSD 

 MSD of BA (MSD_BA) 

 SDSD of BA (SDSD_BA) 

 RESP power (0–0.1) 

 RESP power (0.1–0.2) 

 RESP power (0.2–0.3) 

 RESP power (0.3–0.4) 

Table 5. The EMG features extracted for drivers' stress analysis. 

Time-Domain EMG Features 

 MEMG 

 RMS 

 RMQ 

 ZCR 

The 86-dimensional feature vector of each driver is constructed by concatenating the features given in 

Tables 2-5 as given in the following. 































Features EMGDomain -Time

Features RESPDomain -Frequency

Features RESPDomain -Time

Features GSRFoot Domain -Time

Features GSR HandDomain -Time

FeaturesECG Domain -Frequency

FeaturesECG Domain -Time

Vector Feature                                                                         (1)                  

C. Correlation Analysis 

Pearson’s correlation analysis of the extracted features with each other and with the stress levels is 

made. The Pearson’s correlation XYr between the n - dimensional signals X  and Y is computed as:  

   

     

 







n

i
i

n

i
i

n

i
ii

XY

yYxX

yYxX

r

1

2

1

2

1                                                                                          (2) 

where x  and y  are the means of X  and Y , and iX  and  iY  are the i th samples of X  and Y , 

respectively.  The correlation coefficient has a value in the  1 1,  interval. Full correlation ( 1XYr ) shows that 

the signals X  and Y  are identical while negative full correlation ( 1XYr ) indicates that there is a o180  phase 

shift between identical signals X  and Y , and zero correlation ( 0XYr ) means that X  and Y  are completely 
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different signals. Strength of correlation between the features and between each feature and each stress level are 

analyzed based on the range given by [16] and shown in Table 6. 

Table 6. Interpretation of the strength of correlation results [16]. 

Correlation Coefficient Range Strength of Correlation 

|0.00 -0.30| Weak 

|0.31 -0.50| Moderate 

|0.51 -0.80| Strong 

|0.81 -1.00| Very strong 

IV. RESULTS AND DISCUSSION 

Pearson’s correlation analysis of the features given in (1) with each other and with the stress levels is 

realized in this paper. A-dimension-reduced feature set for stress level recognition is constructed by 

concatenating the very strongly features of each stress level. Table 7 shows the features to be found as very 

strongly correlated with the low stress level. The absolute correlation values of these features with each other as 

well as with all stress levels are given in this table. 

It is seen that the SDHR and the NN50 of ECG signals are full correlated. Hence, it is not necessary to 

use both of them for classification. Since the SDHR is more correlated with low stress level, the NN50 is 

eliminated from the feature set. Besides, the NSCR in hand GSR signals and the RESP powers between 0.1 Hz – 

0.2 Hz and 0.2 Hz – 0.3 Hz are also full correlated with each other. On the score of stronger correlation of the 

RESP power between 0.2 Hz and 0.3 Hz with low stress level, it is kept in the feature set. Although the RESP 

power between 0.3 Hz – 0.4 Hz and the RMS of the EMG signals are not full correlated with any of the other 

features, they are very strongly and strongly correlated with the SDHR, respectively and not much correlated as 

the SDHR does with the low stress level. Hence, they are also excluded from the feature set. 

Table 7. Correlation matrix obtained for features found to be very strongly correlated with the low stress level, including all stress levels. 

 SDHR NN50 
NSCR 

(Hand) 

RESP 

power 

(0.1–0.2) 

RESP 

power 

(0.2–0.3) 

RESP 

power 

(0.3–0.4) 

RMS LS MS HS 

SDHR 1,000 1,000 0,194 0,208 0,195 0,998 0,782 0,924 0,164 0,536 

NN50 1,000 1,000 0,194 0,208 0,195 0,998 0,782 0,918 0,140 0,534 

NSCR (Hand) 0,194 0,194 1,000 1,000 1,000 0,239 0,722 0,851 0,643 0,689 

RESP power 

(0.1–0.2) 
0,208 0,208 1,000 1,000 1,000 0,254 0,733 0,872 0,704 0,147 

RESP power 

(0.2–0.3) 
0,195 0,195 1,000 1,000 1,000 0,240 0,723 0,886 0,623 0,185 

RESP power 

(0.3–0.4) 
0,998 0,998 0,239 0,254 0,240 1,000 0,813 0,880 0,433 0,241 

RMS 0,782 0,782 0,722 0,733 0,723 0,813 1,000 0,887 0,548 0,774 

LS 0,924 0,918 0,851 0,872 0,886 0,880 0,887 1,000 0.412 0.416 

MS 0,164 0,140 0,643 0,704 0,623 0,433 0,548 0.412 1,000 0.592 

HS 0,536 0,534 0,689 0,147 0,185 0,241 0,774 0.416 0.592 1,000 

The features to be detected as very strongly correlated with the moderate stress level and their 

corresponding XYr  values including all stress levels are given in Table 8. The TP of the ECG signals is 

included in the feature set since it is full correlated with the moderate stress level. Resulting from the high 

correlation of the ULF and the TP features of ECG signals and lower correlation of the ULF with moderate stress 

level, the ULF is removed from the feature set. The VarSCR within and the HalfRecSum of the hand GSR and 

the MaxPhAmp of the foot GSR signals are full correlated and they are also very strongly correlated with the LF 
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of the ECG signals and the MFD of the foot GSR signals. Among these features, due to the highest correlation 

with moderate stress level, only the MaxPhAmp of the foot GSR signals is remained in the feature set.  

Table 8. Correlation matrix obtained for features found to be very strongly correlated with the moderate stress level, including all stress 

levels. 

 TP ULF LF VarSCR 
HalfRecSum 

(Hand) 

MaxPhAmp 

(Foot) 

MFD_GSR 

(Foot) 
LS MS HS 

TP 1,000 0,955 0,696 0,230 0,244 0,231 0,203 0,137 1,000 0,118 

ULF 0,955 1,000 0,843 0,452 0,466 0,454 0,426 0,087 0,937 0,062 

LF 0,696 0,843 1,000 0,851 0,859 0,851 0,834 0,320 0,876 0,113 

VarSCR 0,230 0,452 0,851 1,000 1,000 1,000 0,999 0,785 0,842 0,793 

HalfRecSum 

(Hand) 
0,244 0,466 0,859 1,000 1,000 1,000 0,999 0,568 0,806 0,298 

MaxPhAmp 

(Foot) 
0,231 0,454 0,851 1,000 1,000 1,000 0,999 0,152 0,885 0,637 

MFD_GSR 

(Foot) 
0,203 0,426 0,834 0,999 0,999 0,999 1,000 0,537 0,829 0,735 

LS 0,137 0,087 0,320 0,785 0,568 0,152 0,537 1,000 0.412 0.416 

MS 1,000 0,937 0,876 0,842 0,806 0,885 0,829 0.412 1,000 0.592 

HS 0,118 0,062 0,113 0,793 0,298 0,637 0,735 0.416 0.592 1,000 

The in between absolute correlation values of very strongly correlated features with the high stress level 

are indicated in Table 9, and the absolute correlation values of these features are given in Table 10. None of the 

features are full correlated but there exist very strongly correlated features. The MSCR in the hand GSR signals 

is highly correlated with the MinBA and the SDFD of the respiration signals. It is visible to use just the SDFD of 

respiration signals through these features since it is almost full correlated with the moderate stress level. In 

addition, the MFD and the HalfRecMean of the hand GSR signals are highly correlated and the HalfRecMean of 

the hand GSR signals is excluded from the feature set since the MFD of the hand GSR signals has a stronger 

correlation with this level of stress. Moreover, because the SDSD of the respiration signals is more correlated 

with the moderate stress level than the MaxBA-MinBA of which it is highly correlated, the MaxBA-MinBA is 

excluded from the feature set. Among these features in the feature set, all the features except the SDFD and the 

SDSD of the respiration signals due to their weaker correlations with high stress level are removed from the set.  
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Table 9. Correlation matrix obtained for features found to be very strongly correlated with the high stress level. 

 
AmpSum 

(Hand) 

MSCR 

(Hand) 

MFD_GSR 

(Hand) 

HalfRecMean 

(Hand) 

PEngSum 

(Hand) 

MRT 

(Foot) 
MBA 

MaxBA 

-

MinBA 

SDFD SDSD SDSD_BA 

AmpSum 

(Hand) 
1,000 0,026 0,218 0,224 0,223 0,331 0,155 0,319 0,147 0,015 0,011 

MSCR 

(Hand) 
0,026 1,000 0,587 0,405 0,519 0,377 0,895 0,614 0,822 0,504 0,177 

MFD_GSR 

(Hand) 
0,218 0,587 1,000 0,907 0,655 0,359 0,530 0,261 0,477 0,292 0,028 

HalfRecMean 

(Hand) 
0,224 0,405 0,907 1,000 0,801 0,506 0,291 0,111 0,260 0,186 0,037 

PEngSum 

(Hand) 
0,223 0,519 0,655 0,801 1,000 0,733 0,315 0,113 0,380 0,197 0,316 

MRT (Foot) 0,331 0,377 0,359 0,506 0,733 1,000 0,313 0,263 0,511 0,352 0,562 

MBA 0,155 0,895 0,530 0,291 0,315 0,313 1,000 0,518 0,859 0,472 0,069 

MaxBA 

- 

MinBA 

0,319 0,614 0,261 0,111 0,113 0,263 0,518 1,000 0,754 0,920 0,611 

SDFD 0,147 0,822 0,477 0,260 0,380 0,511 0,859 0,754 1,000 0,772 0,560 

SDSD 0,015 0,504 0,292 0,186 0,197 0,352 0,472 0,920 0,772 1,000 0,725 

SDSD_BA 0,011 0,177 0,028 0,037 0,316 0,562 0,069 0,611 0,560 0,725 1,000 

Table 10. Correlation matrix of features, found to be very strongly correlated with the high stress level, with all stress levels. 

 LS MS HS 

AmpSum (Hand) 0,748 0,785 0,915 

MSCR (Hand) 0,672 0,725 0,844 

MFD_GSR (Hand) 0,609 0,780 0,962 

HalfRecMean (Hand) 0,029 0,758 0,948 

PEngSum (Hand) 0,365 0,699 0,939 

MRT (Foot) 0,620 0,628 0,877 

MBA 0,336 0,500 0,975 

MaxBA-MinBA 0,197 0,348 0,969 

SDFD 0,027 0,654 0,991 

SDSD 0,577 0,224 0,984 

SDSD_BA 0,045 0,599 0,975 

LS 1,000 0.412 0.416 

MS 0.412 1,000 0.592 

HS 0.416 0.592 1,000 

The resultant 6-dimensional feature set constructed by selecting almost uncorrelated features that are 

very strongly correlated with each of the stress levels, are given in Table 11. 
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Table 11. Selected features by correlation analysis. 

Related Signal Feature Shows Very Strongly Correlation with 

SDHR ECG  Low stress 

RESP power (0.2–0.3) RESP Low stress 

TP ECG Moderate stress 

MaxPhAmp Foot GSR Moderate stress 

SDFD RESP High stress 

SDSD RESP High stress 

The stress level discriminating power of the selected features, given in Table 10, is measured by the 

Accuracy (ACC) and the False Positive Rate (FPR) metrics succeeded by the kNN (k=5), random forest, 

decision tree, LLC, and SVM classifiers. The classification procedure is realized by 5-fold cross-validation 

technique. These metrics are computed by using the following relations, 

100
FNFPTNTP

TNTP
ACC % 






                                                                                                        (3)                                                                                                           
 

100
TNFP

FP
FPR % 


                                                                                                                           (4)       

where TP, TN, FP, and FN refer to the numbers of true positives, true negatives, false positives, and 

false negatives, respectively. These metrics are computed for each of the five folds, and the mean and the 

standard deviations of the computations are evaluated. The same classification process is also executed by the 

full feature set given in (1) for comparison. The classification results of both full and selected feature sets are 

shown in Figure 1. An average increment of 24.85% in mean ACC and an average decrement of 88.01% in mean 

FPR are satisfied by using the selected feature set for drivers’ stress level recognition. Besides the classification 

success, the decrement in standard deviations of the performance metrics indicates the data independency of the 

selected feature set. 

Although an overall classification accuracy of 100% is achieved by most of the classifiers using the 

selected feature set, the SVM and the LLC classifiers succeeded an accuracy of 95.56% and a FPR of 3.33%. 

   
Figure 1. Classification results of drivers' stress level recognition 

Analyzing the total confusion matrices of these classifiers given in Table 12, it is seen that although 

high stress level is perfectly detected, the non-100% accuracies are because of the inter-belonged FPs and FNs of 
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low and moderate stress levels. These misclassifications are thought to be caused by the closeness of correlation 

strength of the RESP power (0.2–0.3) with low and moderate stress levels.  

Table 12. The total confusion matrices achieved by classifying the selected feature set via SVM and LLC classifiers. 

  Classified Stress Levels by 

  SVM Classifier LLC Classifier 

  Low  

Stress 

Moderate 

Stress 

High  

Stress 

Low 

Stress 

Moderate 

Stress 

High 

Stress 

Actual Stress 

Levels 

Low Stress 9 1 0 9 1 0 

Moderate Stress 1 9 0 1 9 0 

High Stress 0 0 10 0 0 10 

In conclusion, low, moderate, and high stress levels are recognized by 93.33%, 93.33%, and 100% 

accuracies, respectively. 

V. CONCLUSIONS 

A correlation analysis of frequently used physiological measurements, computed from the ECG, hand 

GSR, foot GSR, RESP, and EMG signals for drivers’ stress level recognition, is realized in this paper. The 

experimental study is executed on the publicly available MIT-BIH PhysioNet Multi-parameter Database [10]. 

The correlation analysis is concluded in proposal of almost uncorrelated feature pairs for each stress level with 

very strong intra-level and relatively weak inter-level correlations. These feature pairs indicate that the SDHR 

and the RESP power within the band 0.2-0.3 Hz shows a significant difference in low stress level while the TP 

of the ECG signal and the MaxPhAmp of the foot GSR have high significance for moderate stress level and 

SDFD and SDSD are discriminators for high stress level. The strength of these features are verified by a 

classification procedure using kNN (k=5), random forest, decision tree, LLC, and SVM classifiers with by 5-fold 

cross-validation technique. The recognition ACC is raised up to 100% with an average increment of 24.85%, and 

the FPR is decreased up to 0% by providing a reduction rate of 88.01% on average when the proposed feature set 

is used instead of the full feature set. Besides, the proposed feature set satisfies these results in less time 

consumption which is extremely important for real-time applications. In addition, the data independency of these 

features is approved by the reduced and mostly zeroed standard deviations of both ACC and FPR. These 

outcomes clearly show that the proposed feature set can confidently be integrated into the driving assistance 

systems in new generation vehicles.    
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