Araştırma Makalesi
BibTex RIS Kaynak Göster

Soğuk İklim Bölgesinde Kentsel Mikro İklimin Değerlendirilmesi: Erzurum Kentsel Dönüşüm Alanı Örneği

Yıl 2019, Cilt: 7 Sayı: 2, 103 - 114, 28.08.2019

Öz

Kamusal açık alan tasarımında iklim koşullarına duyarlı bir kentsel tasarım yaklaşımı, her iklim tipi gibi soğuk iklimler için de bir zorunluluktur. Ancak ülkemizde iklime duyarlı ve sürdürülebilir kalkınmayı teşvik etmeye yönelik farkındalığın artmasına rağmen, kentsel gelişmeyi kararlı, esnek ve yerel ölçekte belirleyen çok az sayıda inisiyatif bulunmaktadır. 

Bu araştırmanın kapsamı disiplinler arası doğasına uygun olarak çalışma alanının fiziksel ve iklimsel analizi ile bir mikro klima analizini içeren karma bir yöntem yaklaşımını içermektedir. Çalışmada Türkiye’nin en soğuk iklimlerinden biri olan Erzurum’da, dönüşüm alanlarından biri olarak belirlenmiş Mahallebaşı semti biyoklimatik kriterlere göre değerlendirilmiştir. 2019 yılı kış ayında kaydedilen iklim verileri ile ENVI-met 4.4 modelinde termal konfor değeri sekiz farklı varyasyon için hesaplanmıştır. Oluşturulan varyasyonlar ile kış döneminde hava ve yüzey sıcaklıkları üzerindeki değişim incelenmiş ve ideal tasarım stratejileri ile kışın dış mekan konforunun 2oC’ye kadar arttırılabileceği tespit edilmiştir.

Destekleyen Kurum

Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)

Proje Numarası

2016/2388

Teşekkür

Bu çalışma, doktora tezi kapsamında hazırlanmış olup, 2016/2388 numaralı projeyi destekleyen Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne (BAP) teşekkür ederiz.

Kaynakça

  • 1) Au Andreou, E., & Axarli, K. (2012). Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renewable Energy, 43, 354–363.
  • 2) Battista, G., Carnielo E., Vollaro, R. (2016). Thermal Impact of a Redevoloped Area on Localized Urban Microcliamte: A Case Study in Rome
  • 3) Bruse, M., Fleer, H., 1998. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model, Environ. Model Softw. 13 373-384.
  • 4) Canan F.,  Golasi I,  Ciancio V.,  Coppi M.,  Salata F., 2019. Outdoor thermal comfort conditions during summer in a cold semi-arid climate. A transversal field survey in Central Anatolia (Turkey). Building and Environment, 148 (1)  212-224.
  • 5) Cohen, P., Potchter, O., & Matzarakis, A. (2012). Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Building and Environment, 51, 285–295.
  • 6) De, B., Mukherjee, M., 2016. Impact Of Canyon Desıgn On Thermal Comfort In Warm Humıd Cıtıes: A Case Of Rajarhat-Newtown, Kolkata, Indıa. 4th International Conference on Countermeasures to Urban Heat Island, 30-31 May and 1 June 2016.
  • 7) Dursun, D., Yavaş, M., 2016. Urbanization and the Use of Climate Knowledge in Erzurum, Turkey. 4 th International Conference on Countermeasures to Urban Heat Island, 30-31 May and 1 June 2016. Procedia Engineering, 169: 324-331
  • 8) Dursun, D., Yavaş, M., Güller, C., 2016. Kış Kenti Erzurum’da İklim, Planlama ve Yerel Yönetim Politikalarının Etkileşim Düzeyi. Planlama Dergisi 2016;26(2):147-159 doi: 10.14744/planlama.2016.73644
  • 9) Dursun, D., Yavaş, M., Okudan, Y., 2016. Kış Kenti Erzurum için Kentsel Tasarım Rehberi. International Winter Cities Symposium, Proceedings Book (Electronic Book), ISBN No: 978-975-442-811-7, p. 935-972. 10-12 February, Erzurum.
  • 10) Ebrahimabadi, S., Johansson, C., Nilsson, K.L., 2012. The challenges of incorporating climate considerations into urban planning of the subarctic regions, Paper I. Submitted for publication in European Planning Studies in May 2012.
  • 11) E. Ng, L. Chen, Y. Wang, C. Yuan, A study on the cooling effects of greening in a high-density city: an experience from Hong Kong, Build. Environ. 47 (2012) 256-271.
  • 12) E.L. Krüger, F.O. Minella, F. Rasia, Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil, Build. Environ. 46 (2011) 621-634.
  • 13) F. Ali-Toudert, H. Mayer, 2007. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons, Sol. Energy 81. 742-754.
  • 14) Girgis N., Elariane S., Abd Elrazik M., 2016. Evaluation of heat exhausts impacts on pedestrian thermal comfort. Sustainable Cities and Society 27: 152–159.
  • 15) Golany, G. 1996. Urban design morphology and thermal performance. Atmospheric Environment 30(3): 455–465.16) Guhathakurta, S., & Gober, P. (2010). Residential land use, the urban heat island, and water use in Phoenix: A path analysis. Journal of Planning Education and Research, 30(1), 40–51.
  • 17) Johansson, E., & Emmanuel, R. (2006). The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. International Journal of Biometeorology, 51(2), 119–133.
  • 18) Johansson, E., Spangenberg, J., Gouvêa, M. L., & Freitas, E. D. (2013). Scale-integrated atmospheric simulations to assess thermal comfort in different urban tissues in the warm humid summer of São Paulo, Brazil. Urban Climate, 6, 24–43.
  • 19) Karakounos I., Dimoudi A., Zoras S., 2018. The influence of bioclimatic urban redevelopment on outdoor thermalcomfort. Energy and Buildings 158: 1266–1274.
  • 20) Ketterer C., Matzarakis A. (2014). Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany. Landscape and Urban Planning, 122: 78-88.
  • 21) Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, (2006): World Map of the Köppen-Geiger climate classification, updated. Meteorol. Z., 15, 259-263.
  • 22) Krüger EL, Rossi F., 2011. Effect of personal and microclimatic variables on observed thermal sensation from a field study in southern Brazil. Build Environ 46: 690–697.
  • 23) Lee H., Mayer, H., Chen L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 148; 37-50.
  • 24) Maggiotto G., Buccolieri R., Santo M. A., Leo L. S., Di Sabatino S. (2014). Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: the Lecce (IT) case study. Environmental modelling & software, 60: 69-83.
  • 25) Mills, G., 1999. Urban climatology and urban design, 15th International Congress of Biometeorology and International Conference on Urban Climatology 1999.
  • 26) Middel, A., Brazel, A. J., Gober, P., Myint, S. W., Chang, H., & Duh, J.-D. (2012). Land cover, climate, and the summer surface energy balance in Phoenix, AZ and Portland, OR. International Journal of Climatology, 32(13), 2020–2032.
  • 27) Middel, A., Brazel, A. J., Kaplan, S., & Myint, S. W. (2012). Daytime cooling efficiency and diurnal energy balance in Phoenix, AZ. Climate Research, 54(1), 21–34.
  • 28) Mutlu E., Yilmaz S., Yilmaz H., Mutlu B.E., (2018). Analysis of urban settlement unit by ENVI-met according to different aspects in cold regions. 6th annual international Conference on Architecture and Civil Engineering (ACE 2018), oral presentation, 14-15 May 2018, Singapore
  • 29) Müller, N., Kuttler, W., & Barlag, A.-B. (2013). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 115(1–2), 243–257.
  • 30) Ng, E., Chen, L., Wang, Y., Yuan, C., 2012. A study on the cooling effects of greening in a high-density city: an experience from Hong Kong. Build. Environ. 47,256–271.
  • 31) O’Malley, C., Piroozfar, P., Farr, E. R. P., & Pomponi, F. (2015). Urban heat island (UHI) mitigating strategies: a case-based comparative analysis. Sustainable Cities and Society, 19, 222–235.
  • 32) Pressman, N., 1996. Sustainable winter cities: Future directions for planning, policy and design. Waterloo: Urban & Regional Planning, Faculty of Environmental Studies, University of Waterloo.
  • 33) Pressman, N., 2004. Shaping cities for winter: Climatic comfort and sustainable design. Prince George, B.C.: Winter Cities Association.
  • 34) Tan Z., Lau K. K. L., Ng E. (2016). Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114: 265-274.
  • 35) Taleghani M., Kleerekoper L., Tenpierik M., van den Dobbelsteen A. (2015). Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 83: 65-78.
  • 36) Toy S., Yilmaz S., 2010. Thermal sensation of people performing recreational activities in shadowy environment: a case study from Turkey. Theoredical and Applied Climatology, 101 (3-4):329-343
  • 37) Tsitoura, M., Michailidou, M., Tsoutsos, T., (2016).Achieving sustainability through the management of microclimate parameters in Mediterranean urban environments during summer. Sustainable Cities and Society 26 (2016) 48–64.
  • 38) Tsoka, S., Tsikaloudaki, A., Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications-a review. Sustainable Cities and Society. 43:55-76.
  • 39) Yahia, M. W., & Johansson, E. (2014). Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—the example of residential spaces with detached buildings. Landscape and Urban Planning, 125, 1–16.
  • 40) Yang, F., Lau, S. S. Y., & Qian, F. (2011). Thermal comfort effects of urban design strategies in high-rise urban environments in a sub-tropical climate. Architectural Science Review, 54(4), 285–304.
  • 41) Yilmaz S., Toy S., Irmak M. A., Yilmaz, H., 2007. Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Building and Environment., 42(4):1604-1612 42) Yilmaz H., Yilmaz S., Yavaş M., Mutlu E., Koç A., 2016. Climate-sensitive Pavement Modelling for Pedestrian Ways. 4th International Conference on Countermeasures to Urban Heat Island (UHI) 2016. Procedia Engineering, 169: 408-415
  • 43) Yilmaz, S., Yilmaz, H., Irmak, M.A., Kuzulugil, A.C., Koç, A. 2018a. Effects of urban Pinus sylvestris (L.) plantation sites on thermal comfort. Acta Hortic. 1215, 39-44,DOI:10.17660/ActaHortic.2018.1215.6, Eds G. Pennisi, L. Cremonini, T. Georgiadis, F. Orsini, G.P. Gianquinto, ISBN : 978-94-62612-12-9
  • 44) Yilmaz S., Mutlu E., Yılmaz H., 2018. Alternative Scenarios For Ecological Urbanizations Using Envi-Met Model. Environmental Science and Pollution Research, 25 (26): 26307–26321
  • 45) W.T.L. Chow, R.L. Pope, C.A. Martin, A.J. Brazel, Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts, Theor. Appl. Climatol. 103 (2011) 197-211.
  • 46) Willmott, C. J., 1981. On the validation of models. Physical Geography, 2, 184–194.
  • 47) Willmott, C. J., 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313.
  • 48) Zhou T., Koomen E., van Leeuwen E. S. (2018). Residents’ preferences for cultural services of the landscape along the urban–rural gradient. Urban Forestry & Urban Greening, 29: 131-141.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık
Bölüm Makaleler
Yazarlar

Merve Yavaş 0000-0002-4340-4174

Sevgi Yılmaz 0000-0001-7668-5788

Proje Numarası 2016/2388
Yayımlanma Tarihi 28 Ağustos 2019
Kabul Tarihi 6 Temmuz 2019
Yayımlandığı Sayı Yıl 2019Cilt: 7 Sayı: 2

Kaynak Göster

APA Yavaş, M., & Yılmaz, S. (2019). Soğuk İklim Bölgesinde Kentsel Mikro İklimin Değerlendirilmesi: Erzurum Kentsel Dönüşüm Alanı Örneği. Artium, 7(2), 103-114.

Artium is an OAJ supported by Hasan Kalyoncu University

Open access articles in Artium are licensed under a Creative Commons Attribution-NonCommercial-NoDeriatives 4.0 International License (CC BY-NC-ND 4.0). 

28842https://creativecommons.org/licenses/by-nc-nd/4.0/