Konferans Bildirisi
BibTex RIS Kaynak Göster

Daimi Mıknatıslı Senkron Motorlarda Moment İyileştirmesi ve Moment Salınımlarını Azaltmak İçin Yeni Bir Yöntem: Slitli Stator Yapısı

Yıl 2023, Cilt: 9 Sayı: 2, 163 - 173, 31.08.2023

Öz

PMSM’lar son yıllarda birçok endüstriyel uygulamada sıklıkla kullanılmaya başlanmıştır. Diğer motorlara göre, enerji ve güç yoğunluğu açısından birçok avantaja sahip olmasına rağmen bu motorların en büyük dezavantajı, özellikle konsantre sargı kullanımında meydana gelen moment salınımlarıdır. Genel olarak, moment salınımlarının önlenmesi ve azaltılması için, motor nüve tasarımı ve akım kontrolü gibi iki farklı yöntem kullanılmaktadır.
Bu çalışmada ise moment salınımlarının azaltılması amacıyla stator nüvesinin dişlerinde yarık geometrisi kullanılmıştır. Yarıklı yapıların temel görevi yararlı bir relüktans momenti meydana getirmek ve manyetik akı dağılımının daha düzgün bir şekilde elde edilmesine yardımcı olmaktır. Gerekli performans karşılaştırmalarının yapılabilmesi için, sabit mıknatıslı dış rotorlu senkron motor tipi kullanılmıştır. Performans analizi yapılan PMSM için iki adet nümerik model oluşturulmuştur. Öncelikle, dış rotorlu PMSM için klasik bir motor modeli analitik olarak tasarlanmış ve FEA analizi ile dinamik analizi yapılmıştır. Daha sonra yine aynı fiziksel ve elektriksel özelliklere sahip, dış rotorlu PMSM’in stator dişlerine ince yarıklar açılmak sureti ile FEA analizi gerçekleştirilmiştir. Analizler sonucunda her bir motora ait manyetik alan dağılımları, moment salınım değerleri, performans verilerinin değişimleri verilmiştir. Elde edilen veriler değerlendirildiğinde yarıklı motor modelinden elde edilen moment salınımının original motora göre % 5 daha az salınım yaptığı, ortalama moment değerinin % 3 arttığı gösterilmiştir.

Kaynakça

  • [1] B. Adhavan, M. S. Birundha, C. S. Ravichandran and V. Jagannathan, “Torque ripple reduction in permanent magnet synchronous motor using fuzzy logic control,” Australian Journal of Basic and Applied Sciences, vol. 7, no. 7, pp. 61-68, 2013.
  • [2] R. Abdelmoula, N. B. Hadj, M. Chaieb and R. Neji, “Reducing torque ripples in permanent magnet synchronous motor,” Journal of Electrical Systems, vol. 13, no. 3, pp. 528-542, September 2017.
  • [3] I. Benhamida, A. Ameur, K. Kouzi and B. Gaoui, “Torque ripple minimization in predictive torque control method of pmsm drive using adaptive fuzzy logic modulator and ekf estimator,” Journal of Control, Automation and Electrical Systems, vol. 30, pp. 1007–1018, 2019. doi:10.1007/s40313-019-00505-7
  • [4] S. Brock and J. Deskur, “A practical approach to compensation of torque ripple in high-precision permanent magnet motor drives,” Proc. Of the Int. Conf. on Electrical Drives and Power Electronics, Dubrovnik, Croatia, September 26 – 28, 2005.
  • [5] G. Dajaku and D. Gerling, “New methods for reducing the cogging torque and torque ripples of pmsm,” Proc. of the 4th Int. Electric Drives Production Conference, EDPC 2014, Nuremberg, Germany, 30 September-01 October 2014.
  • [6] P. Yi, X. Wang, Z. Zhou and Z. Sun, “Optimization and implementation of three-phase pmsm current harmonic decomposition technique,” SAE Technical Paper, vol. 2019-01-0604, pp. 1-8, 2019. doi:10.4271/2019-01-0604
  • [7] T. Yan, Q. Liu, B. Dou, Q. Li and B. Li, “An adaptive dynamic programming method for torque ripple minimization of pmsm,” Journal of Industrial and Management Optimization, vol. 17, no. 2, pp. 827-839, March 2021. doi:10.3934/jimo.2019136
  • [8] R. Tao, J. Ma and H. Zhao, “Torque ripple minimization in pmsm based on an indirect adaptive robust controller,” Mathematical Problems in Engineering, vol. 2017, pp. 1-10, October 2017. doi:10.1155/2017/9512351
  • [9] M. H. Hwang, H. S. Lee and H. R. Cha, “Analysis of torque ripple and cogging torque reduction in electric vehicle traction platform applying rotor notched design,” Energies, vol. 11, pp. 1-14, November 2018. doi:10.3390/en11113053
  • [10] H. M. Hasanien, “Torque ripple minimization of permanent magnet synchronous motor using digital observer controller,” Energy Conversion and Management, vol. 51, no. 1, pp. 98–104, January 2010. doi:10.1016/j.enconman.2009.08.027
  • [11] D. Flieller, N. K. Nguyen, P. Wira, G. Sturtzer, D. O. Abdeslam and J. Merckle, “A self-learning solution for torque ripple reduction for non-sinusoidal permanent magnet motor drives based on artificial neural networks,” IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 655–666, February 2014. doi:10.1109/TIE.2013.2257136
  • [12] R. Ilka, Y. A. Beromi and H. Yaghobi, “Cogging torque reduction of permanent magnet synchronous motor using multi-objective optimization”, Mathematics and Computers in Simulation, vol. 153, pp. 83–95, 2018. doi:10.1016/j.matcom.2018.05.018
  • [13] A. J. Ali, A. H. Ahmed and B. M. Saied, “Cogging torque mitigation for pmsm using stator slots design and magnets skewing,” 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering ICECCPCE19, Mosul, Iraq, 13-14 February 2019, pp. 240-245, 2019. doi:10.1109/ICECCPCE46549.2019.203781
  • [14] X. Duan, X. Zhang, Y. Tang and M. Hao, “Cogging torque reduction in pmsm in wide temperature range by response surface methodology,” Symmetry, vol. 13, pp. 1-17, 2021. doi:10.3390/sym13101877
  • [15] K. Abbaszadeh and S. Maroufian, “Cogging torque reduction in pmsm motor by using proposed new auxiliary winding,” Amirkabir University of Technology (Tehran Polytechnic), vol. 46, no. 1, pp. 11-17, Spring 2014. doi:10.22060/eej.2014.436
  • [16] Y. Yu, Y. Pan, Q. Chen, D. Zeng, Y. Hu, H. H. Goh, S. Niu and Z. Zhao, “Cogging torque minimization of surface-mounted permanent magnet synchronous motor based on rsm and nsga-II,” Actuators, vol. 11, pp. 1-13, 2023. doi:10.3390/act11120379
  • [17] J. Klima, J. Nerg, J. Barta and O. Vitek, “The impact of the rotor slit number on the behavior of high-speed induction motor,” Przegląd Elektrotechniczny, vol. R. 94 NR 5/2018, pp. 7-13, 2018. doi:10.15199/48.2018.05.02
  • [18] J. Nerg, T. Aho and J. Pyrhönen, “Effect of odd number of rotor slits on the performance of a high- speed, high-power, solid-rotor induction motor,” Proc. of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, pp. 100-105, 2006.
  • [19] A. G. Yetgin and M. Turan, “Efficiency optimization of slitted–core induction motor,” Journal of Electrical Engineering, vol. 65, no. 1, pp. 60–64, January 2014. doi:10.2478/jee-2014-0009
  • [20] I. A. Viorel, I. Husain, I. Chişu, H. C. Hedeşiu, G. Madescu and L. Szabo, “Reluctance synchronous machine with a particular cageless segmental rotor,” Proc. of the Int. Conf. on Electrical Machines, ICEM 2002, pp. 1-6, 2002.
  • [21] S. Chan and M. N. Hamid, “Finite-element study on a two-phase switched reluctance motor with split rotor poles,” Proc. of the Int. Conf. on Power Electronics and Drives Systems, IEEE PEDS 2005, 28 November-1 December 2005, pp. 1156-1160, 2005.
  • [22] L. Li, A. Foggia, A. K. Lebouc, J. C. Mipo and L. Kobylansky, “Some armature reaction compensation methods numerical design of experiments and optimization for a hybrid excitation machine,” Proc. of the Int. Electric Machines and Drives Conference, 2009 IEEE, Miami, FL, USA, 03-06 May 2009, pp. 832-838, 2009.
  • [23] M. O. Gulbahce, D. T. Mcguiness and D. A. Kocabas, “Shielded axially slitted solid rotor design for high-speed solid rotor induction motors,” IET Electric Power Applications, vol. 12, no. 9, pp. 1371-1377, November 2018. doi:10.1049/iet-epa.2018.5210
  • [24] M. O. Gülbahçe, “Contributions to reduce rotor harmonic losses in solid rotor induction machine for high speed drive applications,” Ph.D. dissertation, Istanbul Technical University, Graduate School Of Science Engineering And Technology, Istanbul, Türkiye, June 2019.
  • [25] Ansys Electronics Desktop 2018.2.0.

An Approach For Reducing Torque Ripples on Permanent Magnet Synchronous Motors : Slitted Stator Core

Yıl 2023, Cilt: 9 Sayı: 2, 163 - 173, 31.08.2023

Öz

Recently permanent magnet synchronous motors (PMSMs) have been used in many traction applications. Although they have many advantages about energy saving, power-torque density and efficiency, main disadvantage of these motor type is torque ripples. In general, there are two ways for reducing the torque ripples. These methods are motor core magnetic design method and current control method. In this study, slitted stator core teeth geometry has used for reducing the torque ripple. One of the basic missions of slitted cores is generating the useful reluctance torque and helping the more symmetrical distribution of the flux density on magnetic cores of the motor. In this study, an outer rotor PMSM has been used for required performance comparisons. There have been two numerical models created for the performance analysis of outer rotor PMSM. Primarily, a classical analytical outer rotor PMSM model has been created and dynamical analysis of this model has been operated with Finite Element Analysis simulation programme. Afterwards, another FEA performance analysis for same physical and electrical featured but slitted stator core numerical model of outer rotor PMSM has been achieved. Magnetic flux density distributions, torque ripple values and other performance values of each prototype motor have been given in study. When the obtained performance values evaluated, torque ripple value of slitted core PMSM has been %5 less than traditional outer rotor PMSM, besides it has been shown that, mean torque value of slitted core PMSM is %3 bigger than classical outer rotor PMSM.

Kaynakça

  • [1] B. Adhavan, M. S. Birundha, C. S. Ravichandran and V. Jagannathan, “Torque ripple reduction in permanent magnet synchronous motor using fuzzy logic control,” Australian Journal of Basic and Applied Sciences, vol. 7, no. 7, pp. 61-68, 2013.
  • [2] R. Abdelmoula, N. B. Hadj, M. Chaieb and R. Neji, “Reducing torque ripples in permanent magnet synchronous motor,” Journal of Electrical Systems, vol. 13, no. 3, pp. 528-542, September 2017.
  • [3] I. Benhamida, A. Ameur, K. Kouzi and B. Gaoui, “Torque ripple minimization in predictive torque control method of pmsm drive using adaptive fuzzy logic modulator and ekf estimator,” Journal of Control, Automation and Electrical Systems, vol. 30, pp. 1007–1018, 2019. doi:10.1007/s40313-019-00505-7
  • [4] S. Brock and J. Deskur, “A practical approach to compensation of torque ripple in high-precision permanent magnet motor drives,” Proc. Of the Int. Conf. on Electrical Drives and Power Electronics, Dubrovnik, Croatia, September 26 – 28, 2005.
  • [5] G. Dajaku and D. Gerling, “New methods for reducing the cogging torque and torque ripples of pmsm,” Proc. of the 4th Int. Electric Drives Production Conference, EDPC 2014, Nuremberg, Germany, 30 September-01 October 2014.
  • [6] P. Yi, X. Wang, Z. Zhou and Z. Sun, “Optimization and implementation of three-phase pmsm current harmonic decomposition technique,” SAE Technical Paper, vol. 2019-01-0604, pp. 1-8, 2019. doi:10.4271/2019-01-0604
  • [7] T. Yan, Q. Liu, B. Dou, Q. Li and B. Li, “An adaptive dynamic programming method for torque ripple minimization of pmsm,” Journal of Industrial and Management Optimization, vol. 17, no. 2, pp. 827-839, March 2021. doi:10.3934/jimo.2019136
  • [8] R. Tao, J. Ma and H. Zhao, “Torque ripple minimization in pmsm based on an indirect adaptive robust controller,” Mathematical Problems in Engineering, vol. 2017, pp. 1-10, October 2017. doi:10.1155/2017/9512351
  • [9] M. H. Hwang, H. S. Lee and H. R. Cha, “Analysis of torque ripple and cogging torque reduction in electric vehicle traction platform applying rotor notched design,” Energies, vol. 11, pp. 1-14, November 2018. doi:10.3390/en11113053
  • [10] H. M. Hasanien, “Torque ripple minimization of permanent magnet synchronous motor using digital observer controller,” Energy Conversion and Management, vol. 51, no. 1, pp. 98–104, January 2010. doi:10.1016/j.enconman.2009.08.027
  • [11] D. Flieller, N. K. Nguyen, P. Wira, G. Sturtzer, D. O. Abdeslam and J. Merckle, “A self-learning solution for torque ripple reduction for non-sinusoidal permanent magnet motor drives based on artificial neural networks,” IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 655–666, February 2014. doi:10.1109/TIE.2013.2257136
  • [12] R. Ilka, Y. A. Beromi and H. Yaghobi, “Cogging torque reduction of permanent magnet synchronous motor using multi-objective optimization”, Mathematics and Computers in Simulation, vol. 153, pp. 83–95, 2018. doi:10.1016/j.matcom.2018.05.018
  • [13] A. J. Ali, A. H. Ahmed and B. M. Saied, “Cogging torque mitigation for pmsm using stator slots design and magnets skewing,” 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering ICECCPCE19, Mosul, Iraq, 13-14 February 2019, pp. 240-245, 2019. doi:10.1109/ICECCPCE46549.2019.203781
  • [14] X. Duan, X. Zhang, Y. Tang and M. Hao, “Cogging torque reduction in pmsm in wide temperature range by response surface methodology,” Symmetry, vol. 13, pp. 1-17, 2021. doi:10.3390/sym13101877
  • [15] K. Abbaszadeh and S. Maroufian, “Cogging torque reduction in pmsm motor by using proposed new auxiliary winding,” Amirkabir University of Technology (Tehran Polytechnic), vol. 46, no. 1, pp. 11-17, Spring 2014. doi:10.22060/eej.2014.436
  • [16] Y. Yu, Y. Pan, Q. Chen, D. Zeng, Y. Hu, H. H. Goh, S. Niu and Z. Zhao, “Cogging torque minimization of surface-mounted permanent magnet synchronous motor based on rsm and nsga-II,” Actuators, vol. 11, pp. 1-13, 2023. doi:10.3390/act11120379
  • [17] J. Klima, J. Nerg, J. Barta and O. Vitek, “The impact of the rotor slit number on the behavior of high-speed induction motor,” Przegląd Elektrotechniczny, vol. R. 94 NR 5/2018, pp. 7-13, 2018. doi:10.15199/48.2018.05.02
  • [18] J. Nerg, T. Aho and J. Pyrhönen, “Effect of odd number of rotor slits on the performance of a high- speed, high-power, solid-rotor induction motor,” Proc. of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, pp. 100-105, 2006.
  • [19] A. G. Yetgin and M. Turan, “Efficiency optimization of slitted–core induction motor,” Journal of Electrical Engineering, vol. 65, no. 1, pp. 60–64, January 2014. doi:10.2478/jee-2014-0009
  • [20] I. A. Viorel, I. Husain, I. Chişu, H. C. Hedeşiu, G. Madescu and L. Szabo, “Reluctance synchronous machine with a particular cageless segmental rotor,” Proc. of the Int. Conf. on Electrical Machines, ICEM 2002, pp. 1-6, 2002.
  • [21] S. Chan and M. N. Hamid, “Finite-element study on a two-phase switched reluctance motor with split rotor poles,” Proc. of the Int. Conf. on Power Electronics and Drives Systems, IEEE PEDS 2005, 28 November-1 December 2005, pp. 1156-1160, 2005.
  • [22] L. Li, A. Foggia, A. K. Lebouc, J. C. Mipo and L. Kobylansky, “Some armature reaction compensation methods numerical design of experiments and optimization for a hybrid excitation machine,” Proc. of the Int. Electric Machines and Drives Conference, 2009 IEEE, Miami, FL, USA, 03-06 May 2009, pp. 832-838, 2009.
  • [23] M. O. Gulbahce, D. T. Mcguiness and D. A. Kocabas, “Shielded axially slitted solid rotor design for high-speed solid rotor induction motors,” IET Electric Power Applications, vol. 12, no. 9, pp. 1371-1377, November 2018. doi:10.1049/iet-epa.2018.5210
  • [24] M. O. Gülbahçe, “Contributions to reduce rotor harmonic losses in solid rotor induction machine for high speed drive applications,” Ph.D. dissertation, Istanbul Technical University, Graduate School Of Science Engineering And Technology, Istanbul, Türkiye, June 2019.
  • [25] Ansys Electronics Desktop 2018.2.0.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Konferans Bildirisi
Yazarlar

Mehmet Murat Tezcan 0000-0002-5390-4527

Asım Gökhan Yetgin 0000-0003-3971-0504

Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 19 Aralık 2022
Kabul Tarihi 1 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

IEEE M. M. Tezcan ve A. G. Yetgin, “An Approach For Reducing Torque Ripples on Permanent Magnet Synchronous Motors : Slitted Stator Core”, GMBD, c. 9, sy. 2, ss. 163–173, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg