İnceleme Makalesi
BibTex RIS Kaynak Göster

İnsansız Hava Araçları (İHA) İçin Küresel Navigasyon Uydu Sistemi (GNSS) Bağımsız Navigasyon

Yıl 2024, Cilt: 6 Sayı: 1, 53 - 88, 28.02.2024
https://doi.org/10.51785/jar.1370785

Öz

İİnsansız Hava Araçlarının (İHA) otonom navigasyon yapabilmesi, Global Navigation Satellite System (GNSS-Küresel Navigasyon Uydu Sistemi) ile sunulan konumlarının doğru olarak belirlenmesine bağlıdır. Uçuş esnasında konum belirlemek ve çevresel oryantasyon için İHA’lar genellikle GNSS, Inertial Measurement Unit (IMU, Ataletsel Ölçüm Birimi-AÖB), jiroskop ve ivmeölçer gibi elektronik ekipmanlarla donatılmıştır. Ancak, kötü hava koşulları, engellerin veya arazilerin varlığı, uyduların elverişsiz konumu, aldatma (spoofing) ve karıştırma (jamming) nedeniyle GNSS sinyali kaybolabilir veya bozulabilir. Bu gibi GNSS sinyali kaybolma veya bozulma durumlarında, AÖB tek başına güvenilir İHA konum bilgisi sağlayamaz hale gelmektedir. Özellikle yeterli görüşün olmadığı ve manuel kullanım ile İHA’nın kalkış noktasına getirilemediği durumlarda GNSS sinyalinin kaybolması büyük kayıplara neden olmaktadır. Bu çalışmada, yapılan GNSS bağımsız uçuş ve navigasyon çalışmalarına yer verilmiştir. Hibrit navigasyon çözümlerinin kullanılmasının GNSS bağımsız İHA uçuşlarında büyük öneme sahip olduğu görülmektedir.

Kaynakça

  • Achtelik, M., Weiss, S., & Siegwart, R. (2011). Onboard IMU and monocular vision-based control for Mavs in unknown in-and outdoor environments. 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 3056-3063. https://ieeexplore.ieee.org/document/5980343.
  • Achtelik, M., Zhang, T., Kuhnlenz, K., & Buss, M. (2009). Visual tracking and control of a quadcopter using a stereo camera system and inertial sensors. 2009 International Conference on Mechatronics and Automation, Changchun, China, 2863-2869. https://ieeexplore.ieee.org/document/5246421.
  • Ahrens, S., Levine, D., Andrews, G., & How, J.P. (2009). Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments. 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2643-2648. https://ieeexplore.ieee.org/document/5152680.
  • Alarcon, F., Santamaria, D., & Viguria, A. (2015). UAV helicopter relative state estimation for autonomous landing on moving platforms in a GPS-denied scenario. IFAC-Papers Online, 48(9), 37-42. https://doi.org/10.1016/j.ifacol.2015.08.056.
  • Andersen, E.D., & Taylor, C.N. (2007). Improving MAV pose estimation using visual information. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 3745-3750. https://ieeexplore.ieee.org/ document/4399563.
  • Angelino, C.V., Baraniello, V.R., & Cicala, L. (2013). High altitude UAV navigation using IMU, GPS and camera. Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 647-654. https://ieeexplore.ieee.org/abstract/ document/6641342.
  • Bachrach, A., de Winter, A., Ruijie He, Hemann, G., Prentice, S., & Roy, N. (2010). RANGE - Robust autonomous navigation in GPS-denied environments. 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 1096-1097. https://ieeexplore.ieee.org/document/5509990.
  • Bachrach, A., Prentice, S., He, R., & Roy, N. (2011). RANGE-Robust autonomous navigation in GPS-denied environments. J. Field Robotics, 28(5), 644-666. https://doi.org/10.1002/rob.20400.
  • Balamurugan, G., Valarmathi, J., & Naidu, V. P. S. (2016). Survey on UAV navigation in GPS denied environments. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, 198-204. https://ieeexplore.ieee.org/document/7955787.
  • Barrett, J.M., Gennert, M.A., & Michalson, W.R. (2013). Development of a low-cost, self-contained, combined vision and inertial navigation system. 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 1-6. https://ieeexplore.ieee.org/document/6556351.
  • BeiDou. (2024). https://en.wikipedia.org/wiki/BeiDou. Erişim Tarihi: 05 Ocak 2024.
  • Benini, A., Mancini, A., & Longhi, S. (2013). An IMU/UWB/Vision-based extended Kalman filter for mini-UAV localization in indoor environment using 802.15.4a wireless sensor network. J Intell Robot Syst, 70, 461-476. https://link.springer.com /article/ 10.1007/s10846-012-9742-1.
  • Bi, Y., Lan, M., Li, J., Zhang, K., Qin, H., Lai, S., & Chen, B. M. (2017). Robust autonomous flight and mission management for MAVs in GPS-denied environments. 2017 11th Asian Control Conference (ASCC), Gold Coast, QLD, Australia, 67-72. https://ieeexplore.ieee.org/document/8287144.
  • Causa, F., Vetrella, A.R., Fasano, G., & Accardo, D. (2018). Multi-UAV formation geometries for cooperative navigation in GNSS-challenging environments. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 775-785. https://ieeexplore.ieee.org/document/8373453.
  • Chambers, A., Scherer, S., Yoder, L., Jain, S., Nuske, S., & Singh, S. (2014). Robust multi-sensor fusion for micro aerial vehicle navigation in GPS-degraded/denied environments. 2014 American Control Conference Portland, OR, USA, 1892-1899. https://ieeexplore.ieee.org/document/6859341.
  • Cheviron, T., Hamel, T., Mahony, R., & Baldwin, G. (2007). Robust nonlinear fusion of inertial and visual data for position, velocity and attitude estimation of UAV. Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 2010-2016. https://ieeexplore.ieee.org/document/4209381.
  • Chilian, A., Hirschmüller, H., & Görner, M. (2011). Multi-sensor data fusion for robust pose estimation of a six-legged walking robot. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2497-2504. https://ieeexplore.ieee.org/document/6094484.
  • Conte, G., & Doherty, P. (2008). An Integrated UAV navigation system based on aerial image matching. 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1-10. https://ieeexplore.ieee.org/document/4526556.
  • DeFranco, P., Mackie, J.D., Morin, M., & Warnick, K.F. (2014). Bio-inspired electromagnetic orientation for UAVs in a GPS-denied environment using MIMO channel sounding. IEEE Transactions on Antennas and Propagation, 62(10), 5250-5259. https://ieeexplore.ieee.org/document/6861435.
  • Fu, C., Carrio, A., & Campoy, P. (2015). Efficient visual odometry and mapping for unmanned aerial vehicle using ARM-based stereo vision pre-processing system. 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 957-962. https://ieeexplore.ieee.org/document/7152384.
  • Galileo (satellite navigation). (2023). https://en.wikipedia.org/wiki/Galileo_(satellite_ navigation) Erişim Tarihi: 31 Aralık 2023.
  • Global Positioning System. (2024). https://en.wikipedia.org/wiki/Global_Positioning_ System Erişim Tarihi: 10 Ocak 2024. , Glonass. (2023). https://en.wikipedia.org/wiki/GLONASS Erişim Tarihi: 24 Aralık 2023.
  • Gryte, K., Bryne, T.H., Albrektsen, S.M., & Johansen, T.A. (2019). Field test results of GNSS-denied inertial navigation aided by phased-array radio systems for UAVs. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 1398-1406. https://ieeexplore.ieee.org/document/8798057.
  • Gu, D.-Y., Zhu, C.-F., Guo, J., Li, S.-X., & Chang, H.-X. (2010). Vision-aided UAV navigation using GIS data. Proceedings of 2010 IEEE International Conference on Vehicular Electronics and Safety, QingDao, China, 78-82. https://ieeexplore.ieee.org/document/5550944.
  • Gyagenda, N., Hatilima, J.V., Roth, H., & Zhmud, V. (2022). A review of GNSS-independent UAV navigation techniques. Robotics and Autonomous Systems, 152, 104069. https://doi.org/10.1016/j.robot.2022.104069.
  • Kaiser, M.K., Gans, N.R., & Dixon, W.E. (2010). Vision-based estimation for guidance, navigation, and control of an aerial vehicle. IEEE Transactions on Aerospace and Electronic Systems, 46(3), 1064-1077. https://ieeexplore.ieee.org/ document/5545174.
  • Koifman, M., & Bar-Itzhack, I.Y. (1999). Inertial navigation system aided by aircraft dynamics. IEEE Trans. Control Syst. Technol,. 7(4), 487-493. https://ieeexplore. ieee.org/document/772164.
  • Kuroswiski, A.R., de Oliveira, N.M.F., & Shiguemori, E.H. (2018). Autonomous long-range navigation in GNSS-denied environment with low-cost UAV platform. 2018 Annual IEEE International Systems Conference (SysCon), Canada, 1-6. https://ieeexplore.ieee.org/document/8369592.
  • Leishman, R.C., McLain, T.W., & Beard, R.W. (2014). Relative navigation approach for vision-based aerial GPS-denied navigation. J. Intell. Robot. Syst. 74, 97-111. https://doi.org/10.1007/s10846-013-9914-7.
  • Li, D., Li, Q., Cheng, N., Wu, Q., Song, J., & Tang, L. (2013). Combined RGBD-inertial based state estimation for MAV in GPS-denied indoor environments. 2013 9th Asian Control Conference (ASCC) Istanbul, Turkey, 1-8. https://ieeexplore.ieee.org/document/6606361 .
  • Li, Q., Li, D.-C., Wu, Q., Tang, L., Huo, Y., Zhang, Y., & Cheng, N. (2013). Autonomous navigation and environment modeling for MAVs in 3-D enclosed industrial environments. Computers in Industry, 64(9), 1161–1177. https://doi.org/10.1016/ j.compind.2013.06.010.
  • Liao, F., Lai, S., Hu, Y., Cui, J., Wang, J.L., Teo, R., & Lin, F. (2016). 3D motion planning for UAVs in GPS-denied unknown forest environment. 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 246-251. https://ieeexplore.ieee.org/ document/7535393.
  • Lin, Y., Gao, F., Qin, T., Gao, W., Liu, T., Wu, W., … Shen, S. (2018). Autonomous aerial navigation using monocular visual-inertial fusion. J. Field Robotics 35(1), 23-51. https://doi.org/10.1002/rob.21732.
  • Lu, H. (2022). Flight in GPS-denied environment: Autonomous navigation system for micro-aerial vehicle. Aerospace Science and Technology, 124, 107521. https://doi.org/10.1016/j.ast.2022.107521.
  • Lutz, P., Müller, M. G., Maier, M., Stoneman, S., Tomić, T., Bargen, I., … Triebel, R. (2020). ARDEA-An MAV with skills for future planetary missions. J. Field Robotics, 37(4), 515-551. https://doi.org/10.1002/rob.21949.
  • Lynen S., Achtelik, M.W., Weiss, S., Chli, M., & Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to MAV navigation. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems Tokyo, Japan, 3923-3929. https://ieeexplore.ieee.org/document/6696917.
  • Magree, D., & Johnson, E.N. (2014). Combined laser and vision-aided inertial navigation for an indoor unmanned aerial vehicle. 2014 American Control Conference Portland, OR, USA, 1900-1905. https://ieeexplore.ieee.org/document/6858995.
  • Mebarki, R., & Lippiello, V. (2014). Image moments-based velocity estimation of UAVs in GPS denied environments. 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics Hokkaido, Japan, 1-6. https://ieeexplore.ieee.org/ document/7017659.
  • Mebarki, R., Cacace, J., & Lippiello, V. (2013). Velocity estimation of an UAV using visual and IMU data in a GPS-denied environment. 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) Linköping, Sweden, 1-6. https://ieeexplore.ieee.org/document/6719334.
  • Miller, M.M., Soloviev, A., de Haag, M.U., & Veth, M. (2011). Navigation in GPS Denied Environments: Feature-Aided Inertial Systems. NATO, RTO-EN-SET-116. https://apps.dtic.mil/sti/pdfs/ADA581023.pdf.
  • Mohta, K., Watterson, M., Mulgaonkar, Y., Liu, S., Qu, C., Makineni, A., … Kumar, V. (2018). Fast, autonomous flight in GPS-denied and cluttered environments. Journal of Field Robotics, 35(1), 101-120. https://doi.org/10.1002/rob.21774.
  • Mourikis, A.I., & Roumeliotis, S.I. (2007). A Multi-state constraint Kalman filter for vision-aided inertial navigation. Proceedings 2007 IEEE International Conference on Robotics and Automation Rome, Italy, 3565-3572. https://ieeexplore.ieee.org/document/4209642.
  • Mutluer, E., & Ünal, A. (2021). GNSS uygulamaları için karıştırmaya dayanıklı anten dizisi tasarımı. URSI-Türkiye X. Bilimsel Kongresi, Gebze Teknik Üniversitesi, Kocaeli. http://ursitr2021.gtu.edu.tr/MCMSR/papers/URSI-TR_2020_paper_58.pdf.
  • Nieuwenhuisen, M., Droeschel, D., Beul, M., & Behnke, S. (2016). Autonomous navigation for micro aerial vehicles in complex GNSS-denied environments. J. Intell. Robot. Syst., 84, 199-216. https://doi.org/10.1007/s10846-015-0274-3.
  • Oleynikova, H., Lanegger, C., Taylor, Z., Pantic, M., Millane, A., Siegwart, R., & Nieto, J. (2020). An open-source system for vision-based micro-aerial vehicle mapping, planning, and flight in cluttered environments. J. Field Robotics, 37(4), 642-666. https://doi.org/10.1002/rob.21950.
  • Oskiper, T., Samarasekera, S., & Kumar, R. (2012). Multi-sensor navigation algorithm using monocular camera, IMU and GPS for large scale augmented reality. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Atlanta, GA, USA, 71-80. https://ieeexplore.ieee.org/document/6402541.
  • Other Global Navigation Satellite Systems (GNSS). (2021). https://www.gps.gov/systems/ gnss/. Erişim Tarihi: 19 Ekim 2021.
  • Pavlenko, T., Schütz, M., Vossiek, M., Walter, T., & Montenegro, S. (2019). Wireless local positioning system for controlled UAV landing in GNSS-denied environment. 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace) Turin, Italy, 171-175. https://ieeexplore. ieee.org/document/8869587.
  • Perez-Grau, F.J., Ragel, R., Caballero, F., Viguria, A., & Ollero, A. (2018). An architecture for robust UAV navigation in GPS‐denied areas. Journal of Field Robotics, 35(1), 121-145. https://doi.org/10.1002/rob.21757.
  • Pırtı, A., Gündoğan, Z.Ö., & Şimşek, M. (2022). QZSS uyduları ve sinyal yapıları. Geomatik Dergisi, 7(3), 243-252. https://dergipark.org.tr/en/download/article-file/1912939.
  • Qin, H., Bi, Y., Ang, K. Z. Y., Wang, K., Li, J., Lan, M., … Lin, F. (2016). A stereo and rotating laser framework for UAV navigation in GPS denied environment. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society Florence, Italy, 6061-6066. https://ieeexplore.ieee.org/document/7793246.
  • Qin, H., Meng, Z., Meng, W., Chen, X., Sun, H., Lin, F., & Ang, M. (2019). Autonomous exploration and mapping system using heterogeneous UAVs and UGVs in GPS-denied environments. IEEE Transactions on Vehicular Technology, 68(2), 1339-1350. https://ieeexplore.ieee.org/document/8598942.
  • Rady, S., Kandil, A.A., & Badreddin, E. (2011). A hybrid localization approach for UAV in GPS denied areas. 2011 IEEE/SICE International Symposium on System Integration (SII), Kyoto, Japan, 1269-1274. https://ieeexplore.ieee.org/document/6147631.
  • Ready, B.B., & Taylor, C.N. (2007). Improving accuracy of MAV pose estimation using visual odometry. 2007 American Control Conference New York, NY, USA. 3721-3726. https://ieeexplore.ieee.org/document/4283137.
  • Russell, J.S., Ye, M., Anderson, B.D.O., Hmam, H., & Sarunic, P. (2020). Cooperative localization of a GPS-denied UAV using direction-of-arrival measurements. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 1966-1978. https://ieeexplore.ieee.org/document/8878024.
  • Sa, I., He, H., Huynh, V., & Corke, P. (2013). Monocular vision based autonomous navigation for a cost-effective MAV in GPS-denied environments. 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Wollongong, NSW, Australia, 1355-1360. https://ieeexplore.ieee.org/document/6584283.
  • Samadzadegan, F., & Abdi, G. (2012). Autonomous navigation of unmanned aerial vehicles based on multi-sensor data fusion. 20th Iranian Conference on Electrical Engineering (ICEE2012) Tehran, Iran, 868-873. https://ieeexplore.ieee.org/ document/6292475.
  • Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., & Campoy, P. (2019). A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J Intell Robot Syst, 95, 601-627. https://doi.org/10.1007/s10846-018-0898-1.
  • Sanfourche, M., Vittori, V., & Le Besnerais, G. (2013). Evo: A realtime embedded stereo odometry for MAV applications. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems Tokyo, Japan, 2107-2114. https://ieeexplore.ieee.org/document/669665.
  • Satellite Navigation. (2024). https://en.wikipedia.org/wiki/Satellite_navigation. Erişim Tarihi: 02 Ocak 2024.
  • Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., … Meier, L. (2014). Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robotics & Automation Magazine, 21(3), 26-40. https://ieeexplore.ieee.org/ document/6880770.
  • Schmid, K., Lutz, P, Tomić, T., Mair, E., & Hirschmüller. (2014). Autonomous vision-based micro air vehicle for indoor and outdoor navigation. J. Field Robotics, 31(4), 537-570. https://doi.org/10.1002/rob.21506.
  • Schmidt, G.T. (2019). GPS based navigation systems in difficult environments. Gyroscopy Navig, 10, 41-53. https://doi.org/10.1134/S207510871902007X.
  • Shan, M., Wang, F., Lin, F., Gao, Z., Tang, Y. Z., & Chen, B. M. (2015). Google map aided visual navigation for UAVs in GPS-denied environment. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) Zhuhai, China, 114-119. https://ieeexplore.ieee.org/document/7418753.
  • Shang, C., Cheng, L., Yu, Q., Wang, X., Peng, R., Chen, Y., … Zhu, Q. (2017). Micro aerial vehicle autonomous flight control in tunnel environment. 2017 9th International Conference on Modelling, Identification and Control (ICMIC) Kunming, China, 93-98. https://ieeexplore.ieee.org/document/8321597.
  • Soloviev, A. (2008). Tight coupling of GPS, laser scanner, and inertial measurements for navigation in urban environments. 2008 IEEE/ION Position, Location and Navigation Symposium Monterey, CA, USA, 511-525. https://ieeexplore.ieee.org/ document/4570059.
  • Tang, Y., Hu, Y., Cui, J., Liao, F., Lao, M., Lin, F., & Teo, R. (2019). Vision-Aided multi-UAV autonomous flocking in GPS-denied environment. IEEE Transactions on Industrial Electronics, 66(1), 616-626. https://ieeexplore.ieee.org/ document/8333748.
  • Taylor, C.N. (2008). Fusion of inertial, vision, and air pressure sensors for MAV navigation. 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Seoul, Korea (South), 475-480. https://ieeexplore.ieee.org/ document/4648040.
  • Tiemann, J., Schweikowski, F., & Wietfeld, C. (2015). Design of an UWB indoor-positioning system for UAV navigation in GNSS-denied environments. 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN) Banff, AB, Canada, 1-7. https://ieeexplore.ieee.org/document/7346960.
  • Unicomb, J., Dantanarayana, L., Arukgoda, J., Ranasinghe, R., Dissanayake, G., & Furukawa, T. (2017). Distance function based 6DOF localization for unmanned aerial vehicles in GPS denied environments. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 5292-5297. https://ieeexplore.ieee.org/document/8206421.
  • Valenti, F., Giaquinto, D., Musto, L., Zinelli, A., Bertozzi, M., & Broggi, A. (2018). Enabling computer vision-based autonomous navigation for unmanned aerial vehicles in cluttered GPS-denied environments. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEEHawaii, USA, 3886–3891. https://ieeexplore.ieee.org/document/8569695.
  • Vanegas, F., & Gonzalez, F. (2016). Uncertainty based online planning for UAV target finding in cluttered and GPS-denied environments. 2016 IEEE Aerospace Conference, IEEE, Montana, USA, 706-714. https://ieeexplore.ieee.org/document/ 7500566.
  • Vanegas, F., Gaston, K.J., Roberts, J., & Gonzalez, F. (2019). A framework for UAV navigation and exploration in GPS-denied environments. 2019 IEEE Aerospace Conference Big Sky, MT, USA, 1-6. https://ieeexplore.ieee.org/document/8741612.
  • Veth, M. J. (2006). Fusion of Imaging and Inertial Sensors for Navigation [Doctoral dissertation, Air University]. https://scholar.afit.edu/cgi/viewcontent.cgi? article=4339&context=etd.
  • Vetrella, A.R., Savvaris, A., Fasano, G., & Accardo D. (2015). RGB-D camera-based quadrotor navigation in GPS-denied and low light environments using known 3D markers. 2015 International Conference on Unmanned Aircraft Systems (ICUAS) Denver, CO, USA, 185-192. https://ieeexplore.ieee.org/document/7152290.
  • Wang C., Wang, T., Liang, J., Chen, Y., & Wu, Y. (2012). Monocular vision and IMU based navigation for a small unmanned helicopter. 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA) Singapore, 1694-1699. https://ieeexplore.ieee.org/document/6360998.
  • Wang, C., Wang, T., Liang, J., Chen, Y., Zhang, Y., & Wang, C. (2012). Monocular visual SLAM for small UAVs in GPS-denied environments. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO) Guangzhou, China, 896-901. https://ieeexplore.ieee.org/document/6491082.
  • Wang, C.-L., Wang, T.-M., Liang, J.-H., Zhang, Y.-C., & Zhou, Y. (2013). Bearing-only visual SLAM for small unmanned aerial vehicles in GPS-denied environments. Int. J. Autom. Comput., 10, 387-396. https://link.springer.com/article/10.1007/s11633-013-0735-8.
  • Warren, M. (2018). Towards visual teach and repeat for GPS-denied flight of a fixed-wing UAV. M Hutter & R. Siegwart, R (Eds.) Field and Service Robotics (s. 481-498). Springer Proceedings in Advanced Robotics 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_31.
  • Weiss S, Achtelik, M.W., Lynen S., Chli, M., & Siegwart, R. (2012). Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments. 2012 IEEE International Conference on Robotics and Automation Saint Paul, MN, USA, 957-964. https://ieeexplore.ieee.org/document/6225147.
  • Whyte, H.D., & Bailey, T. (2006). Simultaneous localisation and mapping: Part I the essential algorithm. Australian Centre for Field Robotics (ACFR) J04, The University of Sydney, Sydney NSW, Australia. https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf.
  • Zahran, S., Moussa, A., & El-Sheimy, N. (2018). Enhanced UAV navigation in GNSS denied environment using repeated dynamics pattern recognition. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS) Monterey, CA, USA, 1135-1142. https://ieeexplore.ieee.org/document/8373497.
  • Zahran, S., Moussa, A., El-Sheimy, N., & Sesay, A.B. (2018). Hybrid machine learning VDM for UAVs in GNSS-denied environment. Navigation - Journal of The Institute of Navigation, 65(3), 477-492. https://doi.org/10.1002/navi.249.
  • Zhang, X., Xian, B., Zhao, B., & Zhang, Y. (2015). Autonomous flight control of a nano quadrotor helicopter in a GPS-denied environment using on-board vision. IEEE Transactions on Industrial Electronics, 62(10), 6392-6403. https://ieeexplore. ieee.org/document/7080923.
  • Zhang, Y., Wang, T., Cai, Z., Wang, Y., & You, Z. (2016). The use of optical flow for UAV motion estimation in indoor environment. Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference Nanjing, China, 785-790. https://ieeexplore.ieee.org/document/7828885.

Global Navigation Satellite System (GNSS) Independent Navigation for Unmanned Aerial Vehicles (UAV)

Yıl 2024, Cilt: 6 Sayı: 1, 53 - 88, 28.02.2024
https://doi.org/10.51785/jar.1370785

Öz

The ability of Unmanned Aerial Vehicles (UAV) to perform autonomous navigation depends on the accurate determination of their positions provided by the Global Navigation Satellite System (GNSS). For position determination and environmental orientation during flight, UAVs are usually equipped with electronic equipment such as GNSS, Inertial Measurement Unit (IMU), gyroscope and accelerometer. However, the GNSS signal may be lost or distorted due to poor weather, obstacles or terrain, the unfavorable position of satellites, spoofing and jamming. In such cases of GNSS signal loss or deterioration, the IMU alone becomes unable to provide reliable UAV location information. Especially in cases where there is not enough visibility and the UAV cannot be brought to the take-off point by manual operation, the loss of the GNSS signal causes great losses. In this paper, GNSS independent flight and navigation studies are included. It is seen that the use of hybrid navigation solutions has great importance in GNSS independent UAV flights.

Kaynakça

  • Achtelik, M., Weiss, S., & Siegwart, R. (2011). Onboard IMU and monocular vision-based control for Mavs in unknown in-and outdoor environments. 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 3056-3063. https://ieeexplore.ieee.org/document/5980343.
  • Achtelik, M., Zhang, T., Kuhnlenz, K., & Buss, M. (2009). Visual tracking and control of a quadcopter using a stereo camera system and inertial sensors. 2009 International Conference on Mechatronics and Automation, Changchun, China, 2863-2869. https://ieeexplore.ieee.org/document/5246421.
  • Ahrens, S., Levine, D., Andrews, G., & How, J.P. (2009). Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments. 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2643-2648. https://ieeexplore.ieee.org/document/5152680.
  • Alarcon, F., Santamaria, D., & Viguria, A. (2015). UAV helicopter relative state estimation for autonomous landing on moving platforms in a GPS-denied scenario. IFAC-Papers Online, 48(9), 37-42. https://doi.org/10.1016/j.ifacol.2015.08.056.
  • Andersen, E.D., & Taylor, C.N. (2007). Improving MAV pose estimation using visual information. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 3745-3750. https://ieeexplore.ieee.org/ document/4399563.
  • Angelino, C.V., Baraniello, V.R., & Cicala, L. (2013). High altitude UAV navigation using IMU, GPS and camera. Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 647-654. https://ieeexplore.ieee.org/abstract/ document/6641342.
  • Bachrach, A., de Winter, A., Ruijie He, Hemann, G., Prentice, S., & Roy, N. (2010). RANGE - Robust autonomous navigation in GPS-denied environments. 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 1096-1097. https://ieeexplore.ieee.org/document/5509990.
  • Bachrach, A., Prentice, S., He, R., & Roy, N. (2011). RANGE-Robust autonomous navigation in GPS-denied environments. J. Field Robotics, 28(5), 644-666. https://doi.org/10.1002/rob.20400.
  • Balamurugan, G., Valarmathi, J., & Naidu, V. P. S. (2016). Survey on UAV navigation in GPS denied environments. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, 198-204. https://ieeexplore.ieee.org/document/7955787.
  • Barrett, J.M., Gennert, M.A., & Michalson, W.R. (2013). Development of a low-cost, self-contained, combined vision and inertial navigation system. 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 1-6. https://ieeexplore.ieee.org/document/6556351.
  • BeiDou. (2024). https://en.wikipedia.org/wiki/BeiDou. Erişim Tarihi: 05 Ocak 2024.
  • Benini, A., Mancini, A., & Longhi, S. (2013). An IMU/UWB/Vision-based extended Kalman filter for mini-UAV localization in indoor environment using 802.15.4a wireless sensor network. J Intell Robot Syst, 70, 461-476. https://link.springer.com /article/ 10.1007/s10846-012-9742-1.
  • Bi, Y., Lan, M., Li, J., Zhang, K., Qin, H., Lai, S., & Chen, B. M. (2017). Robust autonomous flight and mission management for MAVs in GPS-denied environments. 2017 11th Asian Control Conference (ASCC), Gold Coast, QLD, Australia, 67-72. https://ieeexplore.ieee.org/document/8287144.
  • Causa, F., Vetrella, A.R., Fasano, G., & Accardo, D. (2018). Multi-UAV formation geometries for cooperative navigation in GNSS-challenging environments. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 775-785. https://ieeexplore.ieee.org/document/8373453.
  • Chambers, A., Scherer, S., Yoder, L., Jain, S., Nuske, S., & Singh, S. (2014). Robust multi-sensor fusion for micro aerial vehicle navigation in GPS-degraded/denied environments. 2014 American Control Conference Portland, OR, USA, 1892-1899. https://ieeexplore.ieee.org/document/6859341.
  • Cheviron, T., Hamel, T., Mahony, R., & Baldwin, G. (2007). Robust nonlinear fusion of inertial and visual data for position, velocity and attitude estimation of UAV. Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 2010-2016. https://ieeexplore.ieee.org/document/4209381.
  • Chilian, A., Hirschmüller, H., & Görner, M. (2011). Multi-sensor data fusion for robust pose estimation of a six-legged walking robot. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2497-2504. https://ieeexplore.ieee.org/document/6094484.
  • Conte, G., & Doherty, P. (2008). An Integrated UAV navigation system based on aerial image matching. 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1-10. https://ieeexplore.ieee.org/document/4526556.
  • DeFranco, P., Mackie, J.D., Morin, M., & Warnick, K.F. (2014). Bio-inspired electromagnetic orientation for UAVs in a GPS-denied environment using MIMO channel sounding. IEEE Transactions on Antennas and Propagation, 62(10), 5250-5259. https://ieeexplore.ieee.org/document/6861435.
  • Fu, C., Carrio, A., & Campoy, P. (2015). Efficient visual odometry and mapping for unmanned aerial vehicle using ARM-based stereo vision pre-processing system. 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 957-962. https://ieeexplore.ieee.org/document/7152384.
  • Galileo (satellite navigation). (2023). https://en.wikipedia.org/wiki/Galileo_(satellite_ navigation) Erişim Tarihi: 31 Aralık 2023.
  • Global Positioning System. (2024). https://en.wikipedia.org/wiki/Global_Positioning_ System Erişim Tarihi: 10 Ocak 2024. , Glonass. (2023). https://en.wikipedia.org/wiki/GLONASS Erişim Tarihi: 24 Aralık 2023.
  • Gryte, K., Bryne, T.H., Albrektsen, S.M., & Johansen, T.A. (2019). Field test results of GNSS-denied inertial navigation aided by phased-array radio systems for UAVs. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 1398-1406. https://ieeexplore.ieee.org/document/8798057.
  • Gu, D.-Y., Zhu, C.-F., Guo, J., Li, S.-X., & Chang, H.-X. (2010). Vision-aided UAV navigation using GIS data. Proceedings of 2010 IEEE International Conference on Vehicular Electronics and Safety, QingDao, China, 78-82. https://ieeexplore.ieee.org/document/5550944.
  • Gyagenda, N., Hatilima, J.V., Roth, H., & Zhmud, V. (2022). A review of GNSS-independent UAV navigation techniques. Robotics and Autonomous Systems, 152, 104069. https://doi.org/10.1016/j.robot.2022.104069.
  • Kaiser, M.K., Gans, N.R., & Dixon, W.E. (2010). Vision-based estimation for guidance, navigation, and control of an aerial vehicle. IEEE Transactions on Aerospace and Electronic Systems, 46(3), 1064-1077. https://ieeexplore.ieee.org/ document/5545174.
  • Koifman, M., & Bar-Itzhack, I.Y. (1999). Inertial navigation system aided by aircraft dynamics. IEEE Trans. Control Syst. Technol,. 7(4), 487-493. https://ieeexplore. ieee.org/document/772164.
  • Kuroswiski, A.R., de Oliveira, N.M.F., & Shiguemori, E.H. (2018). Autonomous long-range navigation in GNSS-denied environment with low-cost UAV platform. 2018 Annual IEEE International Systems Conference (SysCon), Canada, 1-6. https://ieeexplore.ieee.org/document/8369592.
  • Leishman, R.C., McLain, T.W., & Beard, R.W. (2014). Relative navigation approach for vision-based aerial GPS-denied navigation. J. Intell. Robot. Syst. 74, 97-111. https://doi.org/10.1007/s10846-013-9914-7.
  • Li, D., Li, Q., Cheng, N., Wu, Q., Song, J., & Tang, L. (2013). Combined RGBD-inertial based state estimation for MAV in GPS-denied indoor environments. 2013 9th Asian Control Conference (ASCC) Istanbul, Turkey, 1-8. https://ieeexplore.ieee.org/document/6606361 .
  • Li, Q., Li, D.-C., Wu, Q., Tang, L., Huo, Y., Zhang, Y., & Cheng, N. (2013). Autonomous navigation and environment modeling for MAVs in 3-D enclosed industrial environments. Computers in Industry, 64(9), 1161–1177. https://doi.org/10.1016/ j.compind.2013.06.010.
  • Liao, F., Lai, S., Hu, Y., Cui, J., Wang, J.L., Teo, R., & Lin, F. (2016). 3D motion planning for UAVs in GPS-denied unknown forest environment. 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 246-251. https://ieeexplore.ieee.org/ document/7535393.
  • Lin, Y., Gao, F., Qin, T., Gao, W., Liu, T., Wu, W., … Shen, S. (2018). Autonomous aerial navigation using monocular visual-inertial fusion. J. Field Robotics 35(1), 23-51. https://doi.org/10.1002/rob.21732.
  • Lu, H. (2022). Flight in GPS-denied environment: Autonomous navigation system for micro-aerial vehicle. Aerospace Science and Technology, 124, 107521. https://doi.org/10.1016/j.ast.2022.107521.
  • Lutz, P., Müller, M. G., Maier, M., Stoneman, S., Tomić, T., Bargen, I., … Triebel, R. (2020). ARDEA-An MAV with skills for future planetary missions. J. Field Robotics, 37(4), 515-551. https://doi.org/10.1002/rob.21949.
  • Lynen S., Achtelik, M.W., Weiss, S., Chli, M., & Siegwart, R. (2013). A robust and modular multi-sensor fusion approach applied to MAV navigation. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems Tokyo, Japan, 3923-3929. https://ieeexplore.ieee.org/document/6696917.
  • Magree, D., & Johnson, E.N. (2014). Combined laser and vision-aided inertial navigation for an indoor unmanned aerial vehicle. 2014 American Control Conference Portland, OR, USA, 1900-1905. https://ieeexplore.ieee.org/document/6858995.
  • Mebarki, R., & Lippiello, V. (2014). Image moments-based velocity estimation of UAVs in GPS denied environments. 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics Hokkaido, Japan, 1-6. https://ieeexplore.ieee.org/ document/7017659.
  • Mebarki, R., Cacace, J., & Lippiello, V. (2013). Velocity estimation of an UAV using visual and IMU data in a GPS-denied environment. 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) Linköping, Sweden, 1-6. https://ieeexplore.ieee.org/document/6719334.
  • Miller, M.M., Soloviev, A., de Haag, M.U., & Veth, M. (2011). Navigation in GPS Denied Environments: Feature-Aided Inertial Systems. NATO, RTO-EN-SET-116. https://apps.dtic.mil/sti/pdfs/ADA581023.pdf.
  • Mohta, K., Watterson, M., Mulgaonkar, Y., Liu, S., Qu, C., Makineni, A., … Kumar, V. (2018). Fast, autonomous flight in GPS-denied and cluttered environments. Journal of Field Robotics, 35(1), 101-120. https://doi.org/10.1002/rob.21774.
  • Mourikis, A.I., & Roumeliotis, S.I. (2007). A Multi-state constraint Kalman filter for vision-aided inertial navigation. Proceedings 2007 IEEE International Conference on Robotics and Automation Rome, Italy, 3565-3572. https://ieeexplore.ieee.org/document/4209642.
  • Mutluer, E., & Ünal, A. (2021). GNSS uygulamaları için karıştırmaya dayanıklı anten dizisi tasarımı. URSI-Türkiye X. Bilimsel Kongresi, Gebze Teknik Üniversitesi, Kocaeli. http://ursitr2021.gtu.edu.tr/MCMSR/papers/URSI-TR_2020_paper_58.pdf.
  • Nieuwenhuisen, M., Droeschel, D., Beul, M., & Behnke, S. (2016). Autonomous navigation for micro aerial vehicles in complex GNSS-denied environments. J. Intell. Robot. Syst., 84, 199-216. https://doi.org/10.1007/s10846-015-0274-3.
  • Oleynikova, H., Lanegger, C., Taylor, Z., Pantic, M., Millane, A., Siegwart, R., & Nieto, J. (2020). An open-source system for vision-based micro-aerial vehicle mapping, planning, and flight in cluttered environments. J. Field Robotics, 37(4), 642-666. https://doi.org/10.1002/rob.21950.
  • Oskiper, T., Samarasekera, S., & Kumar, R. (2012). Multi-sensor navigation algorithm using monocular camera, IMU and GPS for large scale augmented reality. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Atlanta, GA, USA, 71-80. https://ieeexplore.ieee.org/document/6402541.
  • Other Global Navigation Satellite Systems (GNSS). (2021). https://www.gps.gov/systems/ gnss/. Erişim Tarihi: 19 Ekim 2021.
  • Pavlenko, T., Schütz, M., Vossiek, M., Walter, T., & Montenegro, S. (2019). Wireless local positioning system for controlled UAV landing in GNSS-denied environment. 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace) Turin, Italy, 171-175. https://ieeexplore. ieee.org/document/8869587.
  • Perez-Grau, F.J., Ragel, R., Caballero, F., Viguria, A., & Ollero, A. (2018). An architecture for robust UAV navigation in GPS‐denied areas. Journal of Field Robotics, 35(1), 121-145. https://doi.org/10.1002/rob.21757.
  • Pırtı, A., Gündoğan, Z.Ö., & Şimşek, M. (2022). QZSS uyduları ve sinyal yapıları. Geomatik Dergisi, 7(3), 243-252. https://dergipark.org.tr/en/download/article-file/1912939.
  • Qin, H., Bi, Y., Ang, K. Z. Y., Wang, K., Li, J., Lan, M., … Lin, F. (2016). A stereo and rotating laser framework for UAV navigation in GPS denied environment. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society Florence, Italy, 6061-6066. https://ieeexplore.ieee.org/document/7793246.
  • Qin, H., Meng, Z., Meng, W., Chen, X., Sun, H., Lin, F., & Ang, M. (2019). Autonomous exploration and mapping system using heterogeneous UAVs and UGVs in GPS-denied environments. IEEE Transactions on Vehicular Technology, 68(2), 1339-1350. https://ieeexplore.ieee.org/document/8598942.
  • Rady, S., Kandil, A.A., & Badreddin, E. (2011). A hybrid localization approach for UAV in GPS denied areas. 2011 IEEE/SICE International Symposium on System Integration (SII), Kyoto, Japan, 1269-1274. https://ieeexplore.ieee.org/document/6147631.
  • Ready, B.B., & Taylor, C.N. (2007). Improving accuracy of MAV pose estimation using visual odometry. 2007 American Control Conference New York, NY, USA. 3721-3726. https://ieeexplore.ieee.org/document/4283137.
  • Russell, J.S., Ye, M., Anderson, B.D.O., Hmam, H., & Sarunic, P. (2020). Cooperative localization of a GPS-denied UAV using direction-of-arrival measurements. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 1966-1978. https://ieeexplore.ieee.org/document/8878024.
  • Sa, I., He, H., Huynh, V., & Corke, P. (2013). Monocular vision based autonomous navigation for a cost-effective MAV in GPS-denied environments. 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Wollongong, NSW, Australia, 1355-1360. https://ieeexplore.ieee.org/document/6584283.
  • Samadzadegan, F., & Abdi, G. (2012). Autonomous navigation of unmanned aerial vehicles based on multi-sensor data fusion. 20th Iranian Conference on Electrical Engineering (ICEE2012) Tehran, Iran, 868-873. https://ieeexplore.ieee.org/ document/6292475.
  • Sampedro, C., Rodriguez-Ramos, A., Bavle, H., Carrio, A., de la Puente, P., & Campoy, P. (2019). A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J Intell Robot Syst, 95, 601-627. https://doi.org/10.1007/s10846-018-0898-1.
  • Sanfourche, M., Vittori, V., & Le Besnerais, G. (2013). Evo: A realtime embedded stereo odometry for MAV applications. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems Tokyo, Japan, 2107-2114. https://ieeexplore.ieee.org/document/669665.
  • Satellite Navigation. (2024). https://en.wikipedia.org/wiki/Satellite_navigation. Erişim Tarihi: 02 Ocak 2024.
  • Scaramuzza, D., Achtelik, M. C., Doitsidis, L., Friedrich, F., Kosmatopoulos, E., Martinelli, A., … Meier, L. (2014). Vision-controlled micro flying robots: From system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robotics & Automation Magazine, 21(3), 26-40. https://ieeexplore.ieee.org/ document/6880770.
  • Schmid, K., Lutz, P, Tomić, T., Mair, E., & Hirschmüller. (2014). Autonomous vision-based micro air vehicle for indoor and outdoor navigation. J. Field Robotics, 31(4), 537-570. https://doi.org/10.1002/rob.21506.
  • Schmidt, G.T. (2019). GPS based navigation systems in difficult environments. Gyroscopy Navig, 10, 41-53. https://doi.org/10.1134/S207510871902007X.
  • Shan, M., Wang, F., Lin, F., Gao, Z., Tang, Y. Z., & Chen, B. M. (2015). Google map aided visual navigation for UAVs in GPS-denied environment. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) Zhuhai, China, 114-119. https://ieeexplore.ieee.org/document/7418753.
  • Shang, C., Cheng, L., Yu, Q., Wang, X., Peng, R., Chen, Y., … Zhu, Q. (2017). Micro aerial vehicle autonomous flight control in tunnel environment. 2017 9th International Conference on Modelling, Identification and Control (ICMIC) Kunming, China, 93-98. https://ieeexplore.ieee.org/document/8321597.
  • Soloviev, A. (2008). Tight coupling of GPS, laser scanner, and inertial measurements for navigation in urban environments. 2008 IEEE/ION Position, Location and Navigation Symposium Monterey, CA, USA, 511-525. https://ieeexplore.ieee.org/ document/4570059.
  • Tang, Y., Hu, Y., Cui, J., Liao, F., Lao, M., Lin, F., & Teo, R. (2019). Vision-Aided multi-UAV autonomous flocking in GPS-denied environment. IEEE Transactions on Industrial Electronics, 66(1), 616-626. https://ieeexplore.ieee.org/ document/8333748.
  • Taylor, C.N. (2008). Fusion of inertial, vision, and air pressure sensors for MAV navigation. 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Seoul, Korea (South), 475-480. https://ieeexplore.ieee.org/ document/4648040.
  • Tiemann, J., Schweikowski, F., & Wietfeld, C. (2015). Design of an UWB indoor-positioning system for UAV navigation in GNSS-denied environments. 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN) Banff, AB, Canada, 1-7. https://ieeexplore.ieee.org/document/7346960.
  • Unicomb, J., Dantanarayana, L., Arukgoda, J., Ranasinghe, R., Dissanayake, G., & Furukawa, T. (2017). Distance function based 6DOF localization for unmanned aerial vehicles in GPS denied environments. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 5292-5297. https://ieeexplore.ieee.org/document/8206421.
  • Valenti, F., Giaquinto, D., Musto, L., Zinelli, A., Bertozzi, M., & Broggi, A. (2018). Enabling computer vision-based autonomous navigation for unmanned aerial vehicles in cluttered GPS-denied environments. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEEHawaii, USA, 3886–3891. https://ieeexplore.ieee.org/document/8569695.
  • Vanegas, F., & Gonzalez, F. (2016). Uncertainty based online planning for UAV target finding in cluttered and GPS-denied environments. 2016 IEEE Aerospace Conference, IEEE, Montana, USA, 706-714. https://ieeexplore.ieee.org/document/ 7500566.
  • Vanegas, F., Gaston, K.J., Roberts, J., & Gonzalez, F. (2019). A framework for UAV navigation and exploration in GPS-denied environments. 2019 IEEE Aerospace Conference Big Sky, MT, USA, 1-6. https://ieeexplore.ieee.org/document/8741612.
  • Veth, M. J. (2006). Fusion of Imaging and Inertial Sensors for Navigation [Doctoral dissertation, Air University]. https://scholar.afit.edu/cgi/viewcontent.cgi? article=4339&context=etd.
  • Vetrella, A.R., Savvaris, A., Fasano, G., & Accardo D. (2015). RGB-D camera-based quadrotor navigation in GPS-denied and low light environments using known 3D markers. 2015 International Conference on Unmanned Aircraft Systems (ICUAS) Denver, CO, USA, 185-192. https://ieeexplore.ieee.org/document/7152290.
  • Wang C., Wang, T., Liang, J., Chen, Y., & Wu, Y. (2012). Monocular vision and IMU based navigation for a small unmanned helicopter. 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA) Singapore, 1694-1699. https://ieeexplore.ieee.org/document/6360998.
  • Wang, C., Wang, T., Liang, J., Chen, Y., Zhang, Y., & Wang, C. (2012). Monocular visual SLAM for small UAVs in GPS-denied environments. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO) Guangzhou, China, 896-901. https://ieeexplore.ieee.org/document/6491082.
  • Wang, C.-L., Wang, T.-M., Liang, J.-H., Zhang, Y.-C., & Zhou, Y. (2013). Bearing-only visual SLAM for small unmanned aerial vehicles in GPS-denied environments. Int. J. Autom. Comput., 10, 387-396. https://link.springer.com/article/10.1007/s11633-013-0735-8.
  • Warren, M. (2018). Towards visual teach and repeat for GPS-denied flight of a fixed-wing UAV. M Hutter & R. Siegwart, R (Eds.) Field and Service Robotics (s. 481-498). Springer Proceedings in Advanced Robotics 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_31.
  • Weiss S, Achtelik, M.W., Lynen S., Chli, M., & Siegwart, R. (2012). Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments. 2012 IEEE International Conference on Robotics and Automation Saint Paul, MN, USA, 957-964. https://ieeexplore.ieee.org/document/6225147.
  • Whyte, H.D., & Bailey, T. (2006). Simultaneous localisation and mapping: Part I the essential algorithm. Australian Centre for Field Robotics (ACFR) J04, The University of Sydney, Sydney NSW, Australia. https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf.
  • Zahran, S., Moussa, A., & El-Sheimy, N. (2018). Enhanced UAV navigation in GNSS denied environment using repeated dynamics pattern recognition. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS) Monterey, CA, USA, 1135-1142. https://ieeexplore.ieee.org/document/8373497.
  • Zahran, S., Moussa, A., El-Sheimy, N., & Sesay, A.B. (2018). Hybrid machine learning VDM for UAVs in GNSS-denied environment. Navigation - Journal of The Institute of Navigation, 65(3), 477-492. https://doi.org/10.1002/navi.249.
  • Zhang, X., Xian, B., Zhao, B., & Zhang, Y. (2015). Autonomous flight control of a nano quadrotor helicopter in a GPS-denied environment using on-board vision. IEEE Transactions on Industrial Electronics, 62(10), 6392-6403. https://ieeexplore. ieee.org/document/7080923.
  • Zhang, Y., Wang, T., Cai, Z., Wang, Y., & You, Z. (2016). The use of optical flow for UAV motion estimation in indoor environment. Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference Nanjing, China, 785-790. https://ieeexplore.ieee.org/document/7828885.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Havacılık Elektroniği, Havacılık Yapıları
Bölüm Derleme Makale
Yazarlar

Engin Göde 0000-0001-9518-9050

Atanur Teoman 0000-0003-0324-8661

Melih Cemal Kushan 0000-0002-9427-6192

Kürşat Tonbul 0000-0002-7572-4033

Gökhan İbrahim Öğünç 0000-0003-0344-9818

Batuhan Daz 0009-0004-2917-874X

Yayımlanma Tarihi 28 Şubat 2024
Kabul Tarihi 28 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 1

Kaynak Göster

APA Göde, E., Teoman, A., Kushan, M. C., Tonbul, K., vd. (2024). Global Navigation Satellite System (GNSS) Independent Navigation for Unmanned Aerial Vehicles (UAV). Journal of Aviation Research, 6(1), 53-88. https://doi.org/10.51785/jar.1370785

15550155491554815547155461554415543

15854  17159  17426   17988logo.png








17297
Bu dergi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.