Araştırma Makalesi
BibTex RIS Kaynak Göster

The Use of Chitosan Extracted from Grown Mushrooms (Agaricus bisporus) in Hemostatic and Antibacterial Wound Dressing

Yıl 2024, Cilt: 5 Sayı: 1, 10 - 16, 16.04.2024

Öz

The objective of this study was to examine the antimicrobial and hemostatic properties of chitosan derived from Agaricus bisporus, with the intention of utilizing it in wound dressings. This study involved the extraction of chitin from Agaricus bisporus mushrooms through demineralization and deproteinization techniques. The resulting chitin was then subjected to deacetylation to obtain chitosan. The morphology, chemical structure, and degree of deacetylation of the chitosan were examined. Furthermore, the antimicrobial efficacy of the chitosan was evaluated against both Gram-negative and Gram-positive bacteria. The study also investigated the hemostatic properties of the chitosan by determining the time required for bleeding cessation. Based on the morphology analysis using FE-SEM, it was found that the surface structure of the chitosan exhibited an amorphous nature. The chemical analysis using FT-IR spectroscopy revealed characteristic peaks for chitosan, specifically the absorption bands at 1633 cm-1 and 1558 cm-1, corresponding to the amide I and amide II bands, respectively. The antimicrobial testing demonstrated the chitosan's effectiveness against both Gram-negative and Gram-positive bacteria. Moreover, upon applying a drop of blood to the chitosan surface, it was observed that clot formation occurred within a timeframe ranging from 5 to 14 seconds. Chitosan obtained from Agaricus bisporus, with its antibacterial and hemostatic qualities, holds potential as a key component in the manufacture of wound dressings and biomedical applications.

Kaynakça

  • [1] Wan, A. C., & Tai, B. C. (2013). Chitin—A promising biomaterial for tissue engineering and stem cell technologies. Biotechnology advances, 31(8), 1776-1785.
  • [2] Dutta, P. K., Ravikumar, M. N. V., & Dutta, J. (2002). Chitin and chitosan for versatile applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 42(3), 307-354.
  • [3] Muzzarelli, R. A. A., & Jeuniaux, C. (1976). In RAA Muzzarelli (Ed.), Chitin.
  • [4] Khor, E. (2014). Chitin: fulfilling a biomaterials promise. Elsevier.
  • [5] Bough, W. A., Salter, W. L., Wu, A. C. M., & Perkins, B. E. (1978). Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. I. Chemical composition, viscosity, and molecular‐weight distribution of chitosan products. Biotechnology and Bioengineering, 20(12), 1931-1943.
  • [6] Chandumpai, A., Singhpibulporn, N., Faroongsarng, D., & Sornprasit, P. (2004). Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species, Loligo lessoniana and Loligo formosana. Carbohydrate Polymers, 58(4), 467-474.
  • [7] Caprile, M. D. (2005). Obtención y utilización de quitina y quitosano a partir de desechos de crustáceos. International Solid Waste Association. Hacia un sistema integral de gestión de residuos sólidos urbanos. Copenhagen, ISWA, 1-6.
  • [8] MAGHSOUDI, V., & Yaghmaei, S. (2010). Comparison of solid substrate and submerged fermentation for chitosan production by Aspergillus niger.
  • [9] Amorim, R. V. D. S., Pedrosa, R. P., Fukushima, K., Martínez, C. R., Ledingham, W. M., Campos-Takaki, D., & Maria, G. (2006). Alternative carbon sources from sugar cane process for submerged cultivation of Cunninghamella bertholletiae to produce chitosan. Food Technology & Biotechnology, 44(4).
  • [10] Di Mario, F., Rapana, P., Tomati, U., & Galli, E. (2008). Chitin and chitosan from Basidiomycetes. International Journal of biological macromolecules, 43(1), 8-12.
  • [11] Ospina Álvarez, S. P., Ramírez Cadavid, D. A., Escobar Sierra, D. M., Ossa Orozco, C. P., Rojas Vahos, D. F., Zapata Ocampo, P., & Atehortúa, L. (2014). Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed research international, 2014.
  • [12] Mohammed, M. H., Williams, P. A., & Tverezovskaya, O. (2013). Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food hydrocolloids, 31(2), 166-171.
  • [13] Wu, T., Zivanovic, S., Draughon, F. A., & Sams, C. E. (2004). Chitin and chitosan value-added products from mushroom waste. Journal of agricultural and food chemistry, 52(26), 7905-7910.
  • [14] Synowiecki, J., & Al-Khateeb, N. A. A. Q. (1997). Mycelia of Mucor rouxii as a source of chitin and chitosan. Food chemistry, 60(4), 605-610.
  • [15] Baskar, D., & Kumar, T. S. (2009). Effect of deacetylation time on the preparation, properties and swelling behavior of chitosan films. Carbohydrate polymers, 78(4), 767-772.
  • [16] Sabnis, S., & Block, L. H. (1997). Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polymer bulletin, 39, 67-71.
  • [17] Teng, W. L., Khor, E., Tan, T. K., Lim, L. Y., & Tan, S. C. (2001). Concurrent production of chitin from shrimp shells and fungi. Carbohydrate research, 332(3), 305-316.
  • [18] Kucukgulmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H., & Kadak, A. E. (2011). Physicochemical characterization of chitosan extracted from Metapenaeus stebbingi shells. Food Chemistry, 126(3), 1144-1148.
  • [19] Paulino, A. T., Simionato, J. I., Garcia, J. C., & Nozaki, J. (2006). Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate polymers, 64(1), 98-103.
  • [20] Ifuku, S., Nomura, R., Morimoto, M., & Saimoto, H. (2011). Preparation of chitin nanofibers from mushrooms. Materials, 4(8), 1417-1425.
  • [21] Yen, M. T., & Mau, J. L. (2004). Annual Tainan woman’s coll. Arts Technol, 23, 229-240.
  • [22] Yen, M. T., & Mau, J. L. (2007). Selected physical properties of chitin prepared from shiitake stipes. LWT-Food Science and Technology, 40(3), 558-563.
  • [23] Mahmoud, A. A., Osman, O., Eid, K., Ashkar, E. A., Okasha, A., Atta, D., ... & Fakhry, A. (2014). FTIR spectroscopy of natural bio-polymers blends. Middle East. J. Appl. Sci, 4, 816-824.
  • [24] Rumengan, I. F. M., Suryanto, E., Modaso, R., Wullur, S., Tallei, T. E., & Limbong, D. (2014). Structural characteristics of chitin and chitosan isolated from the biomass of cultivated rotifer, Brachionus rotundiformis. Int. J. Fish. Aquat. Sci, 3(1), 12-18.
  • [25] Ssekatawa, K., Byarugaba, D. K., Wampande, E. M., Moja, T. N., Nxumalo, E., Maaza, M., ... & Kirabira, J. B. (2021). Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Scientific Reports, 11(1), 4116.
  • [26] Hattori, H., & Ishihara, M. (2015). Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomedical Materials, 10. https://doi.org/10.1088/1748-6041/10/1/015014.
  • [27] Mesa Ospina, N., Ospina Alvarez, S. P., Escobar Sierra, D. M., Rojas Vahos, D. F., Zapata Ocampo, P. A., & Ossa Orozco, C. P. (2015). Isolation of chitosan from Ganoderma lucidum mushroom for biomedical applications. Journal of Materials Science: Materials in Medicine, 26, 1-9.
  • [28] Ke, C. L., Deng, F. S., Chuang, C. Y., & Lin, C. H. (2021). Antimicrobial actions and applications of chitosan. Polymers, 13(6), 904.
  • [29] Savin, S., Craciunescu, O., Oancea, A., Ilie, D., Ciucan, T., Antohi, L. S., ... & Oancea, F. (2020). Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom. Chemistry & Biodiversity, 17(7), e2000175.
  • [30] Jin, H., & Wang, Z. (2022). Advances in Alkylated Chitosan and Its Applications for Hemostasis. Macromol, 2(3), 346-360.
  • [31] Misgav, M., Lubetszki, A., Brutman-Barazani, T., Martinowitz, U., & Kenet, G. (2017). The hemostatic efficacy of chitosan-pads in hemodialysis patients with significant bleeding tendency. The Journal of Vascular Access, 18(3), 220-224.
  • [32] Dowling, M. B., Kumar, R., Keibler, M. A., Hess, J. R., Bochicchio, G. V., & Raghavan, S. R. (2011). A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials, 32(13), 3351-3357.
  • [33] Biranje, S. S., Sun, J., Shi, Y., Yu, S., Jiao, H., Zhang, M., ... & Liu, J. (2021). Polysaccharide-based hemostats: recent developments, challenges, and future perspectives. Cellulose, 28, 8899-86

Kültür Mantarından (Agaricus bisporus) İzole Edilen Kitosanın Hemostatik ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması

Yıl 2024, Cilt: 5 Sayı: 1, 10 - 16, 16.04.2024

Öz

Bu çalışmada, Agaricus bisporus’tan kitosanı izole ederek elde edilen kitosanın yara örtüsünde kullanmak üzere antimikrobiyal ve hemostatik aktiviteleri araştırılması hedeflenmiştir. Bu çalışmada Agaricus bisporus kültür mantarına demineralizasyon işlemi ve ardından deproteinizasyon işlemi uygulayarak kitin elde edilmiştir. Elde edilen kitine deasetilasyon işlemi uygulayarak kitosan elde edilmiştir. Elde edilen kitosanın morfolojisi, kimyasal yapı ve deasetilasyon derecesi araştırılmıştır. Çalışma kapsamında antimikrobiyal edilen kitosanın Gram negatif ve Gram pozitif bakterilere karşı antimikrobiyal özelliği araştırılmıştır. Elde edilen kitosanın hemostatik aktivitesi araştırılmış ve kanamayı durdurmak için geçen süreyi belirlenmiştir. FE-SEM ile elde edilen morfoloji analiz sonuçlarına göre kitosanın yüzey morfolojisi amorf yapıya sahiptir. FT-IR spektroskopisi ile elde edilen kimyasal analiz sonuçlarında, kitosan için karakteristik pikler olan amid I bandının ve amid II'nin sırasıyla 1633 cm-1 ve 1558 cm-1 absorpsiyon bantları gözlemlenmiştir. Antimikrobiyal test sonuçlarına göre, Gram negatif ve Gram pozitif bakterilere karşı duyarlılık göstermiştir. Bununla birlikte elde edilen kitosan üzerine kan damlası bırakılarak pıhtı oluşum süresi 5 ve 14 saniye aralığında olduğu belirlenmiştir. Agaricus bisporus'tan elde edilen kitosan, antibakteriyel ve hemostatik özellikleriyle yara örtülerinin üretiminde ve biyomedikal uygulamalarda önemli bir bileşen olma potansiyeline sahiptir.

Kaynakça

  • [1] Wan, A. C., & Tai, B. C. (2013). Chitin—A promising biomaterial for tissue engineering and stem cell technologies. Biotechnology advances, 31(8), 1776-1785.
  • [2] Dutta, P. K., Ravikumar, M. N. V., & Dutta, J. (2002). Chitin and chitosan for versatile applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 42(3), 307-354.
  • [3] Muzzarelli, R. A. A., & Jeuniaux, C. (1976). In RAA Muzzarelli (Ed.), Chitin.
  • [4] Khor, E. (2014). Chitin: fulfilling a biomaterials promise. Elsevier.
  • [5] Bough, W. A., Salter, W. L., Wu, A. C. M., & Perkins, B. E. (1978). Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. I. Chemical composition, viscosity, and molecular‐weight distribution of chitosan products. Biotechnology and Bioengineering, 20(12), 1931-1943.
  • [6] Chandumpai, A., Singhpibulporn, N., Faroongsarng, D., & Sornprasit, P. (2004). Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species, Loligo lessoniana and Loligo formosana. Carbohydrate Polymers, 58(4), 467-474.
  • [7] Caprile, M. D. (2005). Obtención y utilización de quitina y quitosano a partir de desechos de crustáceos. International Solid Waste Association. Hacia un sistema integral de gestión de residuos sólidos urbanos. Copenhagen, ISWA, 1-6.
  • [8] MAGHSOUDI, V., & Yaghmaei, S. (2010). Comparison of solid substrate and submerged fermentation for chitosan production by Aspergillus niger.
  • [9] Amorim, R. V. D. S., Pedrosa, R. P., Fukushima, K., Martínez, C. R., Ledingham, W. M., Campos-Takaki, D., & Maria, G. (2006). Alternative carbon sources from sugar cane process for submerged cultivation of Cunninghamella bertholletiae to produce chitosan. Food Technology & Biotechnology, 44(4).
  • [10] Di Mario, F., Rapana, P., Tomati, U., & Galli, E. (2008). Chitin and chitosan from Basidiomycetes. International Journal of biological macromolecules, 43(1), 8-12.
  • [11] Ospina Álvarez, S. P., Ramírez Cadavid, D. A., Escobar Sierra, D. M., Ossa Orozco, C. P., Rojas Vahos, D. F., Zapata Ocampo, P., & Atehortúa, L. (2014). Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed research international, 2014.
  • [12] Mohammed, M. H., Williams, P. A., & Tverezovskaya, O. (2013). Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food hydrocolloids, 31(2), 166-171.
  • [13] Wu, T., Zivanovic, S., Draughon, F. A., & Sams, C. E. (2004). Chitin and chitosan value-added products from mushroom waste. Journal of agricultural and food chemistry, 52(26), 7905-7910.
  • [14] Synowiecki, J., & Al-Khateeb, N. A. A. Q. (1997). Mycelia of Mucor rouxii as a source of chitin and chitosan. Food chemistry, 60(4), 605-610.
  • [15] Baskar, D., & Kumar, T. S. (2009). Effect of deacetylation time on the preparation, properties and swelling behavior of chitosan films. Carbohydrate polymers, 78(4), 767-772.
  • [16] Sabnis, S., & Block, L. H. (1997). Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polymer bulletin, 39, 67-71.
  • [17] Teng, W. L., Khor, E., Tan, T. K., Lim, L. Y., & Tan, S. C. (2001). Concurrent production of chitin from shrimp shells and fungi. Carbohydrate research, 332(3), 305-316.
  • [18] Kucukgulmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H., & Kadak, A. E. (2011). Physicochemical characterization of chitosan extracted from Metapenaeus stebbingi shells. Food Chemistry, 126(3), 1144-1148.
  • [19] Paulino, A. T., Simionato, J. I., Garcia, J. C., & Nozaki, J. (2006). Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate polymers, 64(1), 98-103.
  • [20] Ifuku, S., Nomura, R., Morimoto, M., & Saimoto, H. (2011). Preparation of chitin nanofibers from mushrooms. Materials, 4(8), 1417-1425.
  • [21] Yen, M. T., & Mau, J. L. (2004). Annual Tainan woman’s coll. Arts Technol, 23, 229-240.
  • [22] Yen, M. T., & Mau, J. L. (2007). Selected physical properties of chitin prepared from shiitake stipes. LWT-Food Science and Technology, 40(3), 558-563.
  • [23] Mahmoud, A. A., Osman, O., Eid, K., Ashkar, E. A., Okasha, A., Atta, D., ... & Fakhry, A. (2014). FTIR spectroscopy of natural bio-polymers blends. Middle East. J. Appl. Sci, 4, 816-824.
  • [24] Rumengan, I. F. M., Suryanto, E., Modaso, R., Wullur, S., Tallei, T. E., & Limbong, D. (2014). Structural characteristics of chitin and chitosan isolated from the biomass of cultivated rotifer, Brachionus rotundiformis. Int. J. Fish. Aquat. Sci, 3(1), 12-18.
  • [25] Ssekatawa, K., Byarugaba, D. K., Wampande, E. M., Moja, T. N., Nxumalo, E., Maaza, M., ... & Kirabira, J. B. (2021). Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Scientific Reports, 11(1), 4116.
  • [26] Hattori, H., & Ishihara, M. (2015). Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomedical Materials, 10. https://doi.org/10.1088/1748-6041/10/1/015014.
  • [27] Mesa Ospina, N., Ospina Alvarez, S. P., Escobar Sierra, D. M., Rojas Vahos, D. F., Zapata Ocampo, P. A., & Ossa Orozco, C. P. (2015). Isolation of chitosan from Ganoderma lucidum mushroom for biomedical applications. Journal of Materials Science: Materials in Medicine, 26, 1-9.
  • [28] Ke, C. L., Deng, F. S., Chuang, C. Y., & Lin, C. H. (2021). Antimicrobial actions and applications of chitosan. Polymers, 13(6), 904.
  • [29] Savin, S., Craciunescu, O., Oancea, A., Ilie, D., Ciucan, T., Antohi, L. S., ... & Oancea, F. (2020). Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom. Chemistry & Biodiversity, 17(7), e2000175.
  • [30] Jin, H., & Wang, Z. (2022). Advances in Alkylated Chitosan and Its Applications for Hemostasis. Macromol, 2(3), 346-360.
  • [31] Misgav, M., Lubetszki, A., Brutman-Barazani, T., Martinowitz, U., & Kenet, G. (2017). The hemostatic efficacy of chitosan-pads in hemodialysis patients with significant bleeding tendency. The Journal of Vascular Access, 18(3), 220-224.
  • [32] Dowling, M. B., Kumar, R., Keibler, M. A., Hess, J. R., Bochicchio, G. V., & Raghavan, S. R. (2011). A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials, 32(13), 3351-3357.
  • [33] Biranje, S. S., Sun, J., Shi, Y., Yu, S., Jiao, H., Zhang, M., ... & Liu, J. (2021). Polysaccharide-based hemostats: recent developments, challenges, and future perspectives. Cellulose, 28, 8899-86
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomedikal Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ebru Öztaş 0009-0002-2592-6021

Başak Ünver Koluman 0000-0003-1106-5021

Ahmet Koluman 0000-0001-5308-8884

Yayımlanma Tarihi 16 Nisan 2024
Gönderilme Tarihi 26 Ekim 2023
Kabul Tarihi 6 Aralık 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

APA Öztaş, E., Ünver Koluman, B., & Koluman, A. (2024). Kültür Mantarından (Agaricus bisporus) İzole Edilen Kitosanın Hemostatik ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması. Research Journal of Biomedical and Biotechnology, 5(1), 10-16.
AMA Öztaş E, Ünver Koluman B, Koluman A. Kültür Mantarından (Agaricus bisporus) İzole Edilen Kitosanın Hemostatik ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması. RJBB. Nisan 2024;5(1):10-16.
Chicago Öztaş, Ebru, Başak Ünver Koluman, ve Ahmet Koluman. “Kültür Mantarından (Agaricus Bisporus) İzole Edilen Kitosanın Hemostatik Ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması”. Research Journal of Biomedical and Biotechnology 5, sy. 1 (Nisan 2024): 10-16.
EndNote Öztaş E, Ünver Koluman B, Koluman A (01 Nisan 2024) Kültür Mantarından (Agaricus bisporus) İzole Edilen Kitosanın Hemostatik ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması. Research Journal of Biomedical and Biotechnology 5 1 10–16.
IEEE E. Öztaş, B. Ünver Koluman, ve A. Koluman, “Kültür Mantarından (Agaricus bisporus) İzole Edilen Kitosanın Hemostatik ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması”, RJBB, c. 5, sy. 1, ss. 10–16, 2024.
ISNAD Öztaş, Ebru vd. “Kültür Mantarından (Agaricus Bisporus) İzole Edilen Kitosanın Hemostatik Ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması”. Research Journal of Biomedical and Biotechnology 5/1 (Nisan 2024), 10-16.
JAMA Öztaş E, Ünver Koluman B, Koluman A. Kültür Mantarından (Agaricus bisporus) İzole Edilen Kitosanın Hemostatik ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması. RJBB. 2024;5:10–16.
MLA Öztaş, Ebru vd. “Kültür Mantarından (Agaricus Bisporus) İzole Edilen Kitosanın Hemostatik Ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması”. Research Journal of Biomedical and Biotechnology, c. 5, sy. 1, 2024, ss. 10-16.
Vancouver Öztaş E, Ünver Koluman B, Koluman A. Kültür Mantarından (Agaricus bisporus) İzole Edilen Kitosanın Hemostatik ve Antimikrobiyal Yara Örtüsünde Kullanımın Araştırılması. RJBB. 2024;5(1):10-6.