Araştırma Makalesi
BibTex RIS Kaynak Göster

Geoteknik Uygulamaların Yapı Bilgi Modellemesi ile IFC Tabanlı Modellenmesi

Yıl 2024, Cilt: 12 Sayı: 1, 134 - 142, 29.02.2024
https://doi.org/10.51664/artium.1404799

Öz

Kentsel alanlarda şehirleşme ile birlikte barınma, ulaşım, altyapı vb. gibi ihtiyaçların artması ve bunların karşılanması için çözüm modelleri üretilmektedir. Bu tip sorunları etkileyen en önemli özellik farklı mekansal bilgilerin aynı ortamda bütünleşik gösterilmesinin ve çok yönlü bir şekilde ele alınmasını gerektirmektedir. Artan şehirleşmeye paralel olarak gelişen teknoloji, bu tür sorunların üstesinden gelinebilecek yazılım programları ortaya çıkarmıştır. Bu programlar daha çok ya sayısal hesaplama yada geometrik gösterim şeklindedir. Bunları birleştiren ve hepsini tek bir programda gösteren Yapı Bilgi Modelleme (YBM) teknolojisi gelişmiştir. YBM genellikle bina modellene bilmekte ve kent modellerini göstere bilmektedir. Fakat bina modellerinde bina temel elemanları, kent modellerinde geoteknik yapı modelleri ve arazi zemin bilgileri mevcut değildir. Bu makalenin genel amacı kentsel yapılarla sınırlandırılmış bir alanda geoteknik yapıları ve zemin özelliklerini YBM ile modellene bileceğinin göstermektir. YBM yazılımında bina modeli ve diğer modelleri yapabilmek için ölçek kavramı (LoD: Level of Detail) yani ayrıntı düzeyleri ile ifade edilmektedir. Ayrıca her bir ayrıntı öncelikle Endüstri Temel Sınıfları (ETS, IFC) tabanlı formatta oluşturulup daha sonra YBM yazılımları arasında veri akışını sağlamaktadır. Bu çalışmada geoteknik yapıların IFC tabanlı formatta ayrıntı düzeyi oluşturularak üç boyutlu olarak modellenmiştir. Oluşturulan geoteknik model ile beraber bina modellerinde dahil edilmeyen geoteknik yapı elemanlarıda (Fore kazık, iksa yapıları, destek yapıları vb.) YBM dahil edilmiştir. Bu çalışmada oluşturulan model projeyi ilgilendiren yapı elemanlarını tek bir modelde toplamaktadır. Böylece tek bir model yapının kullanım ömrü sırasında ihtiyaç duyulduğu zaman erişimi kolaylıkla sağlanabilmektedir.

Kaynakça

  • Bayer, S., Yeler, O., & Demirel, F. Ş. (2023). Peyzaj Projelerinin YBM (Yapı Bilgi Modelleme) Desteği ile Tasarlanması: Van YYÜ Örneği. JENAS Journal of Environmental and Natural Studies, 5(2), 123-135.
  • Berdigylyjov, M., & Popa, H. (2019). The implementation and role of geotechnical data in BIM process. E3S Web of Conferences, 85(October 2015), 1–8. https://doi.org/10.1051/e3sconf/20198508009
  • Boje, C., Menacho, Á. J. H., Marvuglia, A., Benetto, E., Kubicki, S., Schaubroeck, T., & Gutiérrez, T. N. (2023). A framework using BIM and digital twins in facilitating LCSA for buildings. Journal of Building Engineering, 76, 107232.
  • Bui, H. G., Ninić, J., Koch, C., Hackl, K., & Meschke, G. (2024). Integrated BIM-based modeling and simulation of segmental tunnel lining by means of isogeometric analysis. Finite Elements in Analysis and Design, 229, 104070.
  • Chapman, D., Providakis, S., & Rogers, C. (2020). BIM for the Underground – An enabler of trenchless construction. Underground Space (China), 5(4), 354–361. https://doi.org/10.1016/j.undsp.2019.08.001
  • Christian, J. T. (2004). Geotechnical Engineering Reliability: How Well Do We Know What We Are Doing? Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 985–1003. https://doi.org/10.1061/(asce)1090-0241(2004)130:10(985)
  • Fabozzi, S., Biancardo, S. A., Veropalumbo, R., & Bilotta, E. (2021). I-BIM based approach for geotechnical and numerical modelling of a conventional tunnel excavation. Tunnelling and Underground Space Technology, 108(October), 103723. https://doi.org/10.1016/j.tust.2020.103723
  • Froese, T. M., Materials, B., & On, O. (1999). Industry Foundation Class Modeling for Estimating and. Durability of Building Materials, 2825–2835. http://itc.scix.net/data/works/att/w78-1999-2825.content.pdf
  • Gondar, J., Pinto, A., & Fartaria, C. (2019). The use of BIM technology in geotechnical engineering. 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2019 - Proceedings, 2019-Septe. https://doi.org/10.32075/17ECSMGE-2019-0530
  • Huang, M. Q., Zhu, H. M., Ninić, J., & Zhang, Q. B. (2022). Multi-LOD BIM for underground metro station: Interoperability and design-to-design enhancement. Tunnelling and Underground Space Technology, 119(October 2021). https://doi.org/10.1016/j.tust.2021.104232
  • Huo, H., Bobet, A., Fernández, G., & Ramírez, J. (2005). Load Transfer Mechanisms between Underground Structure and Surrounding Ground: Evaluation of the Failure of the Daikai Station. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1522–1533. https://doi.org/10.1061/(asce)1090-0241(2005)131:12(1522)
  • IFC. (2022). https://bimcorner.com/everything-worth-knowing-about-the-ifc-format/
  • ISO 10303-42. (2022). Industrial automation systems and integration – Product data representation and exchange – Part 42: Integrated generic resource: Geometric and topological representation, 2022.
  • Işın, G., & Pehlevan , E. (2016). Yapı Bilgi Modellemesi (BIM) (Issue May 2012).
  • Karadoğan, A. (2021). Yeraltı Metro İstasyon Yapılarında Algoritmik Tasarım ile Mekan Yerleşim
  • Kaçmaz, Ş. (2019). Parametrik Tasarım ve BIM. Yapı Bilgi Modelleme, 1(1), 3-9.
  • Karadoğan, A. (2021). Yeraltı Metro İstasyon Yapılarında Algoritmik Tasarım ile Mekan Yerleşim Kararlarının Geliştirilmesi. Yapı Bilgi Modelleme, 3(1), 1-11.
  • Koseoglu, O., Sakin, M., & Arayici, Y. (2018). Exploring the BIM and lean synergies in the Istanbul Grand Airport construction project. Engineering, Construction and Architectural Management, 25(10), 1339-1354.
  • Laakso, M., & Kiviniemi, A. (2012). The IFC standard - A review of history, development, and standardization. Electronic Journal of Information Technology in Construction, 17(May), 134–161.
  • Liu, Z. Q., Zhang, F., & Zhang, J. (2016). The building information modeling and its use for data transformation in the structural design stage. Journal of Applied Science and Engineering, 19(3), 273–284. https://doi.org/10.6180/jase.2016.19.3.05
  • Marache, A., Dubost, J., Breysse, D., Denis, A., & Dominique, S. (2009). Understanding subsurface geological and geotechnical complexity at various scales in urban soils using a 3B model. Georisk, 3(4), 192–205. https://doi.org/10.1080/17499510802711994
  • Mayouf, M., Jones, J., Elghaish, F., Emam, H., Ekanayake, E. M. A. C., & Ashayeri, I. (2024). Revolutionising the 4D BIM Process to Support Scheduling Requirements in Modular Construction. Sustainability, 16(2), 476. Morin, G. (2017). Geotechnical BIM : Applying BIM principles to the subsurface. Autodesk University, 1–10.
  • Motamedi, A., Soltani, M. M., Setayeshgar, S., & Hammad, A. (2016). Extending IFC to incorporate information of RFID tags attached to building elements. Advanced Engineering Informatics, 30(1), 39–53. https://doi.org/10.1016/j.aei.2015.11.004
  • Oreto, C., Biancardo, S. A., Abbondati, F., & Veropalumbo, R. (2023). Leveraging Infrastructure BIM for Life-Cycle-Based Sustainable Road Pavement Management. Materials, 16(3), 1047.
  • Phoon, K. K., Cao, Z. J., Ji, J., Leung, Y. F., Najjar, S., Shuku, T., Tang, C., Yin, Z. Y., Ikumasa, Y., & Ching, J. (2022). Geotechnical uncertainty, modeling, and decision making. Soils and Foundations, 62(5), 101189. https://doi.org/10.1016/j.sandf.2022.101189
  • Phoon, K. K., & Tang, C. (2019). Characterisation of geotechnical model uncertainty. Georisk, 13(2), 101–130. https://doi.org/10.1080/17499518.2019.1585545
  • Raza, M. S., Tayeh, B. A., Aisheh, Y. I. A., & Maglad, A. M. (2023). Potential features of building information modeling (BIM) for application of project management knowledge areas in the construction industry. Heliyon, 9(9).
  • Shalabi, F., & Turkan, Y. (2017). IFC BIM-Based Facility Management Approach to Optimize Data Collection for Corrective Maintenance. Journal of Performance of Constructed Facilities, 31(1), 1–13. https://doi.org/10.1061/(asce)cf.1943-5509.0000941
  • Tawelian, L. R., & Mickovski, S. B. (2016). The Implementation of Geotechnical Data into the BIM Process. Procedia Engineering, 143(Ictg), 734–741. https://doi.org/10.1016/j.proeng.2016.06.115
  • Uray, F.,Varlik, A., & Metin, A. (2018). Üç boyutlu kent modellerinde ayrıntı düzeyi kavramı İnce Minareli Medrese (Konya) örneği. Geomatik, 3(1), 74-83.
  • Valeria, N., Roberta, V., Vittoria, C., Domenico, A., Filomena, S., & Stefania, F. (2019). A new frontier of BIM process: Geotechnical BIM. Proceedings of the XVII ECSMGE-2019 Geotechnical Engineering Foundation of the Future. https://doi.org/10.32075/17ECSMGE-2019-0682
  • Vanícek, I., Jirásko, D., & Vanícek, M. (2021). Role of Geotechnical Engineering in BIM process modelling. IOP Conference Series: Earth and Environmental Science, 727(1). https://doi.org/10.1088/1755-1315/727/1/012007
  • Yaylalı, G. & Aydar, U. (2022). Yapı Bilgi Modellemesinin Alt Yapı Projelerinde Kullanımı Üzerine Bir Uygulama Çalışması . Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi , 3 (6) , 34-43 .
  • Wang, H. feng, Lou, M. lin, Chen, X., & Zhai, Y. mei. (2013). Structure-soil-structure interaction between underground structure and ground structure. Soil Dynamics and Earthquake Engineering, 54, 31–38. https://doi.org/10.1016/j.soildyn.2013.07.015
  • Weise, M., Katranuschkov, P., Liebich, T., & Scherer, R. J. (2003). Structural analysis extension of the IFC modelling framework. Electronic Journal of Information Technology in Construction, 8(July), 181–200.
  • Wu, I. C., Lu, S. R., & Hsiung, B. C. (2015). A BIM-based monitoring system for urban deep excavation projects. Visualization in Engineering, 3(1). https://doi.org/10.1186/s40327-014-0015-x
  • Zhang, J., Wu, C., Wang, Y., Ma, Y., Wu, Y., & Mao, X. (2018). The BIM-enabled geotechnical information management of a construction project. Computing, 100(1), 47–63. https://doi.org/10.1007/s00607-017-0571-8
  • Zhu, S., Hack, R., Turner, K., & Hale, M. (2003). How far will uncertainty of the subsurface limit the sustainability planning of the subsurface? Japanese Journal of Radiological Technology, 49(5), 785.

IFC-Based Modeling of Geotechnical Applications with Building Informatioan Modeling

Yıl 2024, Cilt: 12 Sayı: 1, 134 - 142, 29.02.2024
https://doi.org/10.51664/artium.1404799

Öz

With urbanization in urban areas, needs such as housing, transportation and infrastructure increase and solution models have been created to meet them. The most important feature affecting this type of problem requires the integrated display of different spatial information in the same environment and handling it in a versatile way. Therefore, more environmentally friendly systems are needed that will respond to the complex problems of meeting increasing urbanization needs and will also encourage future use. Technology developing in parallel with increasing urbanization has created software programs that can overcome such problems. These programs are mostly in the form of numerical calculation and geometric representation. Building Information Modeling (BIM) technology, which combines these and displays them all in a single program, has developed. BIM is generally available in building models and city models. However, building foundation elements in building models, geotechnical structure models and soil character information in city models are not available. The general purpose of this article is to show that geotechnical structures and soil properties can be modeled with BIM in an area limited by urban structures. In order to make building models and other models in BIM software, the level of detail (LoD) is expressed in terms of levels of detail. In addition, each detail is first created in an Industry Foundation Classes (IFC)-based format, and then data flows between BIM software. In this study, geotechnical structures were modeled in three dimensions by creating a detailed level in an IFC-based format. Along with the created geotechnical model, geotechnical structural elements (bored piles, shoring structures, retaining walls, etc.) that are not included in the building models are also included in BIM. The model created in this study collects the building elements relevant to the project in a single model. Thus, a single-model building can be easily accessed when needed during its lifetime.

Kaynakça

  • Bayer, S., Yeler, O., & Demirel, F. Ş. (2023). Peyzaj Projelerinin YBM (Yapı Bilgi Modelleme) Desteği ile Tasarlanması: Van YYÜ Örneği. JENAS Journal of Environmental and Natural Studies, 5(2), 123-135.
  • Berdigylyjov, M., & Popa, H. (2019). The implementation and role of geotechnical data in BIM process. E3S Web of Conferences, 85(October 2015), 1–8. https://doi.org/10.1051/e3sconf/20198508009
  • Boje, C., Menacho, Á. J. H., Marvuglia, A., Benetto, E., Kubicki, S., Schaubroeck, T., & Gutiérrez, T. N. (2023). A framework using BIM and digital twins in facilitating LCSA for buildings. Journal of Building Engineering, 76, 107232.
  • Bui, H. G., Ninić, J., Koch, C., Hackl, K., & Meschke, G. (2024). Integrated BIM-based modeling and simulation of segmental tunnel lining by means of isogeometric analysis. Finite Elements in Analysis and Design, 229, 104070.
  • Chapman, D., Providakis, S., & Rogers, C. (2020). BIM for the Underground – An enabler of trenchless construction. Underground Space (China), 5(4), 354–361. https://doi.org/10.1016/j.undsp.2019.08.001
  • Christian, J. T. (2004). Geotechnical Engineering Reliability: How Well Do We Know What We Are Doing? Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 985–1003. https://doi.org/10.1061/(asce)1090-0241(2004)130:10(985)
  • Fabozzi, S., Biancardo, S. A., Veropalumbo, R., & Bilotta, E. (2021). I-BIM based approach for geotechnical and numerical modelling of a conventional tunnel excavation. Tunnelling and Underground Space Technology, 108(October), 103723. https://doi.org/10.1016/j.tust.2020.103723
  • Froese, T. M., Materials, B., & On, O. (1999). Industry Foundation Class Modeling for Estimating and. Durability of Building Materials, 2825–2835. http://itc.scix.net/data/works/att/w78-1999-2825.content.pdf
  • Gondar, J., Pinto, A., & Fartaria, C. (2019). The use of BIM technology in geotechnical engineering. 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2019 - Proceedings, 2019-Septe. https://doi.org/10.32075/17ECSMGE-2019-0530
  • Huang, M. Q., Zhu, H. M., Ninić, J., & Zhang, Q. B. (2022). Multi-LOD BIM for underground metro station: Interoperability and design-to-design enhancement. Tunnelling and Underground Space Technology, 119(October 2021). https://doi.org/10.1016/j.tust.2021.104232
  • Huo, H., Bobet, A., Fernández, G., & Ramírez, J. (2005). Load Transfer Mechanisms between Underground Structure and Surrounding Ground: Evaluation of the Failure of the Daikai Station. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1522–1533. https://doi.org/10.1061/(asce)1090-0241(2005)131:12(1522)
  • IFC. (2022). https://bimcorner.com/everything-worth-knowing-about-the-ifc-format/
  • ISO 10303-42. (2022). Industrial automation systems and integration – Product data representation and exchange – Part 42: Integrated generic resource: Geometric and topological representation, 2022.
  • Işın, G., & Pehlevan , E. (2016). Yapı Bilgi Modellemesi (BIM) (Issue May 2012).
  • Karadoğan, A. (2021). Yeraltı Metro İstasyon Yapılarında Algoritmik Tasarım ile Mekan Yerleşim
  • Kaçmaz, Ş. (2019). Parametrik Tasarım ve BIM. Yapı Bilgi Modelleme, 1(1), 3-9.
  • Karadoğan, A. (2021). Yeraltı Metro İstasyon Yapılarında Algoritmik Tasarım ile Mekan Yerleşim Kararlarının Geliştirilmesi. Yapı Bilgi Modelleme, 3(1), 1-11.
  • Koseoglu, O., Sakin, M., & Arayici, Y. (2018). Exploring the BIM and lean synergies in the Istanbul Grand Airport construction project. Engineering, Construction and Architectural Management, 25(10), 1339-1354.
  • Laakso, M., & Kiviniemi, A. (2012). The IFC standard - A review of history, development, and standardization. Electronic Journal of Information Technology in Construction, 17(May), 134–161.
  • Liu, Z. Q., Zhang, F., & Zhang, J. (2016). The building information modeling and its use for data transformation in the structural design stage. Journal of Applied Science and Engineering, 19(3), 273–284. https://doi.org/10.6180/jase.2016.19.3.05
  • Marache, A., Dubost, J., Breysse, D., Denis, A., & Dominique, S. (2009). Understanding subsurface geological and geotechnical complexity at various scales in urban soils using a 3B model. Georisk, 3(4), 192–205. https://doi.org/10.1080/17499510802711994
  • Mayouf, M., Jones, J., Elghaish, F., Emam, H., Ekanayake, E. M. A. C., & Ashayeri, I. (2024). Revolutionising the 4D BIM Process to Support Scheduling Requirements in Modular Construction. Sustainability, 16(2), 476. Morin, G. (2017). Geotechnical BIM : Applying BIM principles to the subsurface. Autodesk University, 1–10.
  • Motamedi, A., Soltani, M. M., Setayeshgar, S., & Hammad, A. (2016). Extending IFC to incorporate information of RFID tags attached to building elements. Advanced Engineering Informatics, 30(1), 39–53. https://doi.org/10.1016/j.aei.2015.11.004
  • Oreto, C., Biancardo, S. A., Abbondati, F., & Veropalumbo, R. (2023). Leveraging Infrastructure BIM for Life-Cycle-Based Sustainable Road Pavement Management. Materials, 16(3), 1047.
  • Phoon, K. K., Cao, Z. J., Ji, J., Leung, Y. F., Najjar, S., Shuku, T., Tang, C., Yin, Z. Y., Ikumasa, Y., & Ching, J. (2022). Geotechnical uncertainty, modeling, and decision making. Soils and Foundations, 62(5), 101189. https://doi.org/10.1016/j.sandf.2022.101189
  • Phoon, K. K., & Tang, C. (2019). Characterisation of geotechnical model uncertainty. Georisk, 13(2), 101–130. https://doi.org/10.1080/17499518.2019.1585545
  • Raza, M. S., Tayeh, B. A., Aisheh, Y. I. A., & Maglad, A. M. (2023). Potential features of building information modeling (BIM) for application of project management knowledge areas in the construction industry. Heliyon, 9(9).
  • Shalabi, F., & Turkan, Y. (2017). IFC BIM-Based Facility Management Approach to Optimize Data Collection for Corrective Maintenance. Journal of Performance of Constructed Facilities, 31(1), 1–13. https://doi.org/10.1061/(asce)cf.1943-5509.0000941
  • Tawelian, L. R., & Mickovski, S. B. (2016). The Implementation of Geotechnical Data into the BIM Process. Procedia Engineering, 143(Ictg), 734–741. https://doi.org/10.1016/j.proeng.2016.06.115
  • Uray, F.,Varlik, A., & Metin, A. (2018). Üç boyutlu kent modellerinde ayrıntı düzeyi kavramı İnce Minareli Medrese (Konya) örneği. Geomatik, 3(1), 74-83.
  • Valeria, N., Roberta, V., Vittoria, C., Domenico, A., Filomena, S., & Stefania, F. (2019). A new frontier of BIM process: Geotechnical BIM. Proceedings of the XVII ECSMGE-2019 Geotechnical Engineering Foundation of the Future. https://doi.org/10.32075/17ECSMGE-2019-0682
  • Vanícek, I., Jirásko, D., & Vanícek, M. (2021). Role of Geotechnical Engineering in BIM process modelling. IOP Conference Series: Earth and Environmental Science, 727(1). https://doi.org/10.1088/1755-1315/727/1/012007
  • Yaylalı, G. & Aydar, U. (2022). Yapı Bilgi Modellemesinin Alt Yapı Projelerinde Kullanımı Üzerine Bir Uygulama Çalışması . Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi , 3 (6) , 34-43 .
  • Wang, H. feng, Lou, M. lin, Chen, X., & Zhai, Y. mei. (2013). Structure-soil-structure interaction between underground structure and ground structure. Soil Dynamics and Earthquake Engineering, 54, 31–38. https://doi.org/10.1016/j.soildyn.2013.07.015
  • Weise, M., Katranuschkov, P., Liebich, T., & Scherer, R. J. (2003). Structural analysis extension of the IFC modelling framework. Electronic Journal of Information Technology in Construction, 8(July), 181–200.
  • Wu, I. C., Lu, S. R., & Hsiung, B. C. (2015). A BIM-based monitoring system for urban deep excavation projects. Visualization in Engineering, 3(1). https://doi.org/10.1186/s40327-014-0015-x
  • Zhang, J., Wu, C., Wang, Y., Ma, Y., Wu, Y., & Mao, X. (2018). The BIM-enabled geotechnical information management of a construction project. Computing, 100(1), 47–63. https://doi.org/10.1007/s00607-017-0571-8
  • Zhu, S., Hack, R., Turner, K., & Hale, M. (2003). How far will uncertainty of the subsurface limit the sustainability planning of the subsurface? Japanese Journal of Radiological Technology, 49(5), 785.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Bilgi Modelleme ve Yönetimi, Yapı Teknolojisi
Bölüm Makaleler
Yazarlar

Muhammet Çınar 0000-0001-5475-7787

Halit Aslan 0000-0003-1777-2456

Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 14 Aralık 2023
Kabul Tarihi 16 Şubat 2024
Yayımlandığı Sayı Yıl 2024Cilt: 12 Sayı: 1

Kaynak Göster

APA Çınar, M., & Aslan, H. (2024). Geoteknik Uygulamaların Yapı Bilgi Modellemesi ile IFC Tabanlı Modellenmesi. Artium, 12(1), 134-142. https://doi.org/10.51664/artium.1404799

Artium is an OAJ supported by Hasan Kalyoncu University

Open access articles in Artium are licensed under a Creative Commons Attribution-NonCommercial-NoDeriatives 4.0 International License (CC BY-NC-ND 4.0). 

28842https://creativecommons.org/licenses/by-nc-nd/4.0/